机器人学——姿态描述方法(欧拉角,固定角,D-H法,绕定轴旋转)

绕坐标轴旋转

刚体绕X,Y,Z轴旋转θ角的公式
RX(θ)=[1000cosθsinθ0sinθcosθ] R_{X}(\theta)=\left[ \begin{array}{ccc}{1} & {0} & {0} \\ {0} & {\cos \theta} & {-\sin \theta} \\ {0} & {\sin \theta} & {\cos \theta}\end{array}\right]

RY(θ)=[cosθ0sinθ010sinθ0cosθ] R_{Y}(\theta)=\left[ \begin{array}{ccc}{\cos \theta} & {0} & {\sin \theta} \\ {0} & {1} & {0} \\ {-\sin \theta} & {0} & {\cos \theta}\end{array}\right]

RZ(θ)=[cosθsinθ0sinθcosθ0001] R_{Z}(\theta)=\left[ \begin{array}{ccc}{\cos \theta} & {-\sin \theta} & {0} \\ {\sin \theta} & {\cos \theta} & {0} \\ {0} & {0} & {1}\end{array}\right]

欧拉角

例如首先将坐标系{B}和一个已知参考坐标系{A}\{A\}重合。先将{B}\{B\}ZBZ_B旋转α\alpha,再绕YBY_B旋转β\beta,最后绕XBX_B旋转γ\gamma
这样三个一组的旋转被称作欧拉角
上面描述的就是ZYX欧拉角,旋转过程如下图所示:
机器人学——姿态描述方法(欧拉角,固定角,D-H法,绕定轴旋转)
其旋转矩阵为:
RZYX(α,β,γ)=Rz(α)RY(β)RX(γ)=[cαcβcαsβsγsαcγcαsβcγ+sαsγsαcβsαsβsγ+cαcγsαsβcγcαsγsβcβsγcβcγ] \boldsymbol{R}_{Z^{\prime} Y^{\prime} X^{\prime}}(\alpha, \beta, \gamma) =R_{z}(\alpha) R_{Y}(\beta) R_{X}(\gamma)\\ =\left[ \begin{array}{ccc} {c \alpha c \beta } & {c \alpha s \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta c \gamma+s \alpha s \gamma} \\{s \alpha c \beta} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha s \beta c \gamma-c \alpha s \gamma} \\ {-s \beta} & {c \beta s \gamma} & {c \beta c \gamma} \end{array}\right]
所有12种欧拉角坐标系的定义由下式给出
RXYZ(α,β,γ)=[cβcγcβsγsβsαsβcγ+cαsγsαsβsγ+cαcγsαcβcαsβcγ+sαsγcαsβsγ+sαcγcαcβ] \boldsymbol{R}_{X^{\prime} Y^{\prime} Z^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc}{c \beta c \gamma} & {-c \beta s \gamma} & {s \beta} \\ {s \alpha s \beta c \gamma+c \alpha s \gamma} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta } \\{-c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha s \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta }\end{array}\right]
RXZY(α,β,γ)=[cβcγsβcβsγcαsβcγ+sαsγcαcβcαsβsγsαcγsαsβcγcαsγsαcβsαsβsγ+cαcγ] \boldsymbol{R}_{X^{\prime} Z^{\prime} Y^{\prime} }(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc}{c \beta c \gamma} & {-s \beta} & {c \beta s \gamma} \\{c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha c \beta } & {c \alpha s \beta s \gamma-s \alpha c \gamma} \\ {s \alpha s \beta c \gamma-c \alpha s \gamma} & {s \alpha c \beta } & {s \alpha s \beta s \gamma+c \alpha c \gamma}\end{array}\right]
RYXZ(α,β,γ)=[sαsβsγ+cαcγsαsβcγcαsγsαcβcβsγcβcγsβcαsβsγsαcγcαsβcγ+sαsγcαcβ] \boldsymbol{R}_{Y^{\prime} X^{\prime} Z^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {s \alpha s \beta s \gamma+c \alpha c \gamma} & {s \alpha s \beta c \gamma-c \alpha s \gamma} & {s \alpha c \beta} \\{c \beta s \gamma} & {c \beta c \gamma} & {-s \beta} \\{c \alpha s \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha c \beta } \end{array}\right]
RYZX(α,β,γ)=[cαcβcαsβcγ+sαsγcαsβsγ+sαcγsβcβcγcβsγsαcβsαsβcγ+cαsγsαsβsγ+cαcγ] \boldsymbol{R}_{Y^{\prime} Z^{\prime} X^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {c \alpha c \beta } & {-c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha s \beta s \gamma+s \alpha c \gamma} \\{s \beta} & {c \beta c \gamma} & {-c \beta s \gamma} \\ {-s \alpha c \beta} & {s \alpha s \beta c \gamma+c \alpha s \gamma} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} \end{array}\right]
RZXY(α,β,γ)=[sαsβsγ+cαcγsαcβsαsβcγ+cαsγcαsβsγ+sαcγcαcβcαsβcγ+sαsγcβsγsβcβcγ] \boldsymbol{R}_{Z^{\prime} X^{\prime} Y^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta} & {s \alpha s \beta c \gamma+c \alpha s \gamma} \\ {c \alpha s \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta } & {-c \alpha s \beta c \gamma+s \alpha s \gamma} \\{-c \beta s \gamma} & {s \beta} & {c \beta c \gamma} \end{array}\right]
RZYX(α,β,γ)=[cαcβcαsβsγsαcγcαsβcγ+sαsγsαcβsαsβsγ+cαcγsαsβcγcαsγsβcβsγcβcγ] \boldsymbol{R}_{Z^{\prime} Y^{\prime} X^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {c \alpha c \beta } & {c \alpha s \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta c \gamma+s \alpha s \gamma} \\{s \alpha c \beta} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha s \beta c \gamma-c \alpha s \gamma} \\ {-s \beta} & {c \beta s \gamma} & {c \beta c \gamma} \end{array}\right]
RXYX(α,β,γ)=[cβsβsγsβcγsαsβsαcβsγ+cαcγsαcβcγcαsγcαsβcαcβsγ+sαcγcαcβcγsαsγ] \boldsymbol{R}_{X^{\prime} Y^{\prime} X^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc}{c \beta} & {s \beta s \gamma} & {s \beta c \gamma} \\{s \alpha s \beta } & {-s \alpha c \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta c \gamma-c \alpha s \gamma} \\{c \alpha s \beta} & {c \alpha c \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta c \gamma-s \alpha s \gamma} \end{array}\right]
RXZX(α,β,γ)=[cβsβcγsβsγcαsβcαcβcγsαsγcαcβsγsαcγsαsβsαcβcγ+cαsγsαcβsγ+cαcγ] \boldsymbol{R}_{X^{\prime} Z^{\prime} X^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc}{c \beta} & {-s \beta c \gamma}& {s \beta s \gamma} \\{c \alpha s \beta} & {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha c \beta s \gamma-s \alpha c \gamma} \\{s \alpha s \beta } & {s \alpha c \beta c \gamma+c \alpha s \gamma} & {-s \alpha c \beta s \gamma+c \alpha c \gamma} \end{array}\right]
RYXY(α,β,γ)=[sαcβsγ+cαcγsαsβsαcβcγ+cαsγsβsγcβsβcγcαcβsγsαcγcαsβcαcβcγsαsγ] \boldsymbol{R}_{Y^{\prime} X^{\prime} Y^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc}{-s \alpha c \beta s \gamma+c \alpha c \gamma} & {s \alpha s \beta } & {s \alpha c \beta c \gamma+c \alpha s \gamma} \\{s \beta s \gamma} & {c \beta} & {-s \beta c \gamma} \\{-c \alpha c \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta} & {c \alpha c \beta c \gamma-s \alpha s \gamma} \end{array}\right]
RYZY(α,β,γ)=[cαcβcγsαsγcαsβcαcβsγ+sαcγsβsγcβsβcγsαcβcγcαsγsαsβsαcβsγ+cαcγ] \boldsymbol{R}_{Y^{\prime} Z^{\prime} Y^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha s \beta} & {c \alpha c \beta s \gamma+s \alpha c \gamma} \\{s \beta s \gamma} & {c \beta} & {s \beta c \gamma} \\{-s \alpha c \beta c \gamma-c \alpha s \gamma} & {s \alpha s \beta } & {-s \alpha c \beta s \gamma+c \alpha c \gamma} \end{array}\right]
RZXZ(α,β,γ)=[sαcβsγ+cαcγsαcβcγcαsγsαsβcαcβsγ+sαcγcαcβcγsαsγcαsβsβsγsβcγcβ] \boldsymbol{R}_{Z^{\prime} X^{\prime} Z^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {-s \alpha c \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta c \gamma-c \alpha s \gamma} & {s \alpha s \beta } \\{c \alpha c \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha s \beta} \\{s \beta s \gamma} & {s \beta c \gamma} & {c \beta} \end{array}\right]
RZYZ(α,β,γ)=[cαcβcγsαsγcαcβsγsαcγcαsβsαcβcγ+cαsγsαcβsγ+cαcγsαsβsβcγsβsγcβ] \boldsymbol{R}_{Z^{\prime} Y^{\prime} Z^{\prime}}(\alpha, \beta, \gamma) =\left[ \begin{array}{ccc} {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha c \beta s \gamma-s \alpha c \gamma} & {-c \alpha s \beta} \\{s \alpha c \beta c \gamma+c \alpha s \gamma} & {-s \alpha c \beta s \gamma+c \alpha c \gamma} & {s \alpha s \beta } \\{-s \beta c \gamma} & {s \beta s \gamma} & {c \beta} \end{array}\right]

固定角

固定角的描述方法与欧拉角类似只不过是绕基础坐标系的坐标轴旋转:
例如XYZ固定角坐标系,有时把他们定义为回转角、俯仰角和偏转角
机器人学——姿态描述方法(欧拉角,固定角,D-H法,绕定轴旋转)
其旋转矩阵为:
RXYZ(γ,β,α)=Rz(α)RY(β)RX(γ)=[cαcβcαsβsγsαcγcαsβcγ+sαsγsαcβsαsβsγ+cαcγsαsβcγcαsγsβcβsγcβcγ] \boldsymbol{R}_{XYZ}(\gamma, \beta, \alpha) =R_{z}(\alpha) R_{Y}(\beta) R_{X}(\gamma)\\ =\left[ \begin{array}{ccc} {c \alpha c \beta } & {c \alpha s \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta c \gamma+s \alpha s \gamma} \\{s \alpha c \beta} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha s \beta c \gamma-c \alpha s \gamma} \\ {-s \beta} & {c \beta s \gamma} & {c \beta c \gamma} \end{array}\right]
可以看出他与ZYX欧拉角结果相同。其实有如下结论:
  三次绕固定轴旋转的最终姿态和以相反顺序三次绕运动坐标轴旋转的最终姿态相同

所有12种固定角坐标系的定义由下式给出:
RXYZ(γ,β,α)=[cαcβcαsβsγsαcγcαsβcγ+sαsγsαcβsαsβsγ+cαcγsαsβcγcαsγsβcβsγcβcγ] \boldsymbol{R}_{XYZ}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {c \alpha c \beta } & {c \alpha s \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta c \gamma+s \alpha s \gamma} \\{s \alpha c \beta} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha s \beta c \gamma-c \alpha s \gamma} \\ {-s \beta} & {c \beta s \gamma} & {c \beta c \gamma} \end{array}\right]
RXZY(γ,β,α)=[cαcβcαsβcγ+sαsγcαsβsγ+sαcγsβcβcγcβsγsαcβsαsβcγ+cαsγsαsβsγ+cαcγ] \boldsymbol{R}_{XZY}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {c \alpha c \beta } & {-c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha s \beta s \gamma+s \alpha c \gamma} \\{s \beta} & {c \beta c \gamma} & {-c \beta s \gamma} \\ {-s \alpha c \beta} & {s \alpha s \beta c \gamma+c \alpha s \gamma} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} \end{array}\right]
RYXZ(γ,β,α)=[sαsβsγ+cαcγsαcβsαsβcγ+cαsγcαsβsγ+sαcγcαcβcαsβcγ+sαsγcβsγsβcβcγ] \boldsymbol{R}_{YXZ}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta} & {s \alpha s \beta c \gamma+c \alpha s \gamma} \\ {c \alpha s \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta } & {-c \alpha s \beta c \gamma+s \alpha s \gamma} \\{-c \beta s \gamma} & {s \beta} & {c \beta c \gamma} \end{array}\right]
RYZX(γ,β,α)=[cβcγsβcβsγcαsβcγ+sαsγcαcβcαsβsγsαcγsαsβcγcαsγsαcβsαsβsγ+cαcγ] \boldsymbol{R}_{YZX}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc}{c \beta c \gamma} & {-s \beta} & {c \beta s \gamma} \\{c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha c \beta } & {c \alpha s \beta s \gamma-s \alpha c \gamma} \\ {s \alpha s \beta c \gamma-c \alpha s \gamma} & {s \alpha c \beta } & {s \alpha s \beta s \gamma+c \alpha c \gamma}\end{array}\right]
RZXY(γ,β,α)=[sαsβsγ+cαcγsαsβcγcαsγsαcβcβsγcβcγsβcαsβsγsαcγcαsβcγ+sαsγcαcβ] \boldsymbol{R}_{ZXY}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {s \alpha s \beta s \gamma+c \alpha c \gamma} & {s \alpha s \beta c \gamma-c \alpha s \gamma} & {s \alpha c \beta} \\{c \beta s \gamma} & {c \beta c \gamma} & {-s \beta} \\{c \alpha s \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha c \beta } \end{array}\right]
RZYX(γ,β,α)=[cβcγcβsγsβsαsβcγ+cαsγsαsβsγ+cαcγsαcβcαsβcγ+sαsγcαsβsγ+sαcγcαcβ] \boldsymbol{R}_{ZYX}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc}{c \beta c \gamma} & {-c \beta s \gamma} & {s \beta} \\ {s \alpha s \beta c \gamma+c \alpha s \gamma} & {-s \alpha s \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta } \\{-c \alpha s \beta c \gamma+s \alpha s \gamma} & {c \alpha s \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta }\end{array}\right]
RXYX(γ,β,α)=[cβsβsγsβcγsαsβsαcβsγ+cαcγsαcβcγcαsγcαsβcαcβsγ+sαcγcαcβcγsαsγ] \boldsymbol{R}_{XYX}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc}{c \beta} & {s \beta s \gamma} & {s \beta c \gamma} \\{s \alpha s \beta } & {-s \alpha c \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta c \gamma-c \alpha s \gamma} \\{c \alpha s \beta} & {c \alpha c \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta c \gamma-s \alpha s \gamma} \end{array}\right]
RXZX(γ,β,α)=[cβsβcγsβsγcαsβcαcβcγsαsγcαcβsγsαcγsαsβsαcβcγ+cαsγsαcβsγ+cαcγ] \boldsymbol{R}_{XZX}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc}{c \beta} & {-s \beta c \gamma}& {s \beta s \gamma} \\{c \alpha s \beta} & {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha c \beta s \gamma-s \alpha c \gamma} \\{s \alpha s \beta } & {s \alpha c \beta c \gamma+c \alpha s \gamma} & {-s \alpha c \beta s \gamma+c \alpha c \gamma} \end{array}\right]
RYXY(γ,β,α)=[sαcβsγ+cαcγsαsβsαcβcγ+cαsγsβsγcβsβcγcαcβsγsαcγcαsβcαcβcγsαsγ] \boldsymbol{R}_{YXY}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc}{-s \alpha c \beta s \gamma+c \alpha c \gamma} & {s \alpha s \beta } & {s \alpha c \beta c \gamma+c \alpha s \gamma} \\{s \beta s \gamma} & {c \beta} & {-s \beta c \gamma} \\{-c \alpha c \beta s \gamma-s \alpha c \gamma} & {c \alpha s \beta} & {c \alpha c \beta c \gamma-s \alpha s \gamma} \end{array}\right]
RYZY(γ,β,α)=[cαcβcγsαsγcαsβcαcβsγ+sαcγsβsγcβsβcγsαcβcγcαsγsαsβsαcβsγ+cαcγ] \boldsymbol{R}_{YZY}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha s \beta} & {c \alpha c \beta s \gamma+s \alpha c \gamma} \\{s \beta s \gamma} & {c \beta} & {s \beta c \gamma} \\{-s \alpha c \beta c \gamma-c \alpha s \gamma} & {s \alpha s \beta } & {-s \alpha c \beta s \gamma+c \alpha c \gamma} \end{array}\right]
RZXZ(γ,β,α)=[sαcβsγ+cαcγsαcβcγcαsγsαsβcαcβsγ+sαcγcαcβcγsαsγcαsβsβsγsβcγcβ] \boldsymbol{R}_{ZXZ}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {-s \alpha c \beta s \gamma+c \alpha c \gamma} & {-s \alpha c \beta c \gamma-c \alpha s \gamma} & {s \alpha s \beta } \\{c \alpha c \beta s \gamma+s \alpha c \gamma} & {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha s \beta} \\{s \beta s \gamma} & {s \beta c \gamma} & {c \beta} \end{array}\right]
RZYZ(γ,β,α)=[cαcβcγsαsγcαcβsγsαcγcαsβsαcβcγ+cαsγsαcβsγ+cαcγsαsβsβcγsβsγcβ] \boldsymbol{R}_{ZYZ}(\gamma, \beta, \alpha) =\left[ \begin{array}{ccc} {c \alpha c \beta c \gamma-s \alpha s \gamma} & {-c \alpha c \beta s \gamma-s \alpha c \gamma} & {-c \alpha s \beta} \\{s \alpha c \beta c \gamma+c \alpha s \gamma} & {-s \alpha c \beta s \gamma+c \alpha c \gamma} & {s \alpha s \beta } \\{-s \beta c \gamma} & {s \beta s \gamma} & {c \beta} \end{array}\right]

D-H变换矩阵

D-H法建立的变换矩阵的过程类似于欧拉角,其变换顺序为
机器人学——姿态描述方法(欧拉角,固定角,D-H法,绕定轴旋转)
沿XiX_i轴从ZiZ_iZi+1Z_{i+1}移动aia_i
XiX_i轴从ZiZ_iZi+1Z_{i+1}旋转αi\alpha_i
沿ZiZ_i轴从Xi1X_{i-1}XiX_i移动did_i
ZiZ_i轴从Xi1X_{i-1}XiX_i旋转θi\theta_i
所以一个关节的变换矩阵如下
ii1T=RX(αi1)DX(ai1)RZ(θi)DZ(di) _{i}^{i-1} T=R_{X}\left(\alpha_{i-1}\right) D_{X}\left(a_{i-1}\right) R_{Z}\left(\theta_{i}\right) D_{Z}\left(d_{i}\right)

ii1T=[cθisθi0ai1sθicαi1cθicαi1sαi1sαi1disθisαi1cθisαi1cαi1cαi1di0001] _{i}^{i-1} T=\left[ \begin{array}{cccc}{c \boldsymbol{\theta}_{i}} & {-s \theta_{i}} & {0} & {a_{i-1}} \\ {s \theta_{i} c \alpha_{i-1}} & {c \boldsymbol{\theta}_{i} c \alpha_{i-1}} & {-s \alpha_{i-1}} & {-s \alpha_{i-1} d_{i}} \\ {s \theta_{i} s \alpha_{i-1}} & {c \theta_{i} s \alpha_{i-1}} & {c \alpha_{i-1}} & {c \alpha_{i-1} d_{i}} \\ {0} & {0} & {0} & {1}\end{array}\right]

绕定轴旋转

矢量qq绕单位矢量k^\widehat{k}旋转θ\theta角,由Rodriques公式得:
q=qcosθ+sinθ(k^×q)+(1cosθ)(k^q^)k^q'=qcos\theta+sin\theta(\widehat{k}\times q)+(1-cos\theta)(\widehat{k}\cdot \widehat{q})\widehat{k}
其旋转矩阵表示为:
RK(θ)=[kxkxvθ+cθkxkyvθkzsθkxkzvθ+kysθkxkyvθ+kzsθkykyvθ+cθkykzvθkxsθkxkzvθkysθkykzvθ+kxsθkzkzvθ+cθ] \boldsymbol{R}_{K}(\theta) =\left[ \begin{array}{ccc} {k_xk_xv\theta+c\theta} & {k_xk_yv\theta-k_zs\theta} & {k_xk_zv\theta+k_ys\theta} \\{k_xk_yv\theta+k_zs\theta} & {k_yk_yv\theta+c\theta} & {k_yk_zv\theta-k_xs\theta} \\{k_xk_zv\theta-k_ys\theta} & {k_yk_zv\theta+k_xs\theta} & {k_zk_zv\theta+c\theta} \end{array}\right]
其中
vθ=1cθv_\theta=1-c\theta