ROC曲线 vs Precision-Recall曲线

ROC曲线的优势
  ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持稳定。在实际的数据集中经常会出现类不平衡现象,而且测试数据中的正负样本的分布也可能随着时间变化。下图是ROC曲线和Precision-Recall曲线的对比。

其中(a)和©为ROC曲线,(b)和(d)为Precision-Recall曲线。(a)和(b)展示的是分类器在原始测试集(正负样本分布平衡)的结果,©和(d)是将测试集中负样本的数量增加到原来的10倍。可以明显看出,ROC曲线基本保持原貌,而Precision-Recall曲线则变化较大。

PR曲线会面临一个问题,当需要获得更高recall时,model需要输出更多的样本,precision可能会伴随出现下降/不变/升高,得到的曲线会出现浮动差异(出现锯齿),无法像ROC一样保证单调性。所以,对于正负样本分布大致均匀的问题,ROC曲线作为性能指标更鲁棒。
  ROC曲线 vs Precision-Recall曲线
   PRC曲线的优势
  在正负样本分布得极不均匀(highly skewed datasets),负例远大于正例时,并且这正是该问题正常的样本分布时,PRC比ROC能更有效地反应分类器的好坏,即PRC曲线在正负样本比例悬殊较大时更能反映分类的真实性能。例如上面的©(d)中正负样本比例为1:10,ROC效果依然看似很好,但是PR曲线则表现的比较差。举个例子,
  ROC曲线 vs Precision-Recall曲线
   单从图(a)看,这两个分类器都比较完美(非常接近左上角)。而从图(b)可以看出,这两个分类器仍有巨大的提升空间。那么原因是什么呢? 通过看Algorithm1的点 A,可以得出一些结论。首先图(a)和(b中)的点A是相同的点,因为TPR就是Recall,两者是一样的。

假设数据集有100个正样本。可以得到以下结论:

由图(a)点A,可得:TPR=TP/(TP+FN)=TP/所有正样本 =TP/100=0.8,所以TP=80。

由图(b)点A,可得:Precision=TP/(TP+FP)=80/(80+FP)=0.05,所以FP=1520。

再由图(a)点A,可得:FPR=FP/(FP+TN)=FP/所有负样本=1520/所有负样本=0.1,所以负样本数量是15200。

由此,可以得出原数据集中只有100个正样本,却有15200个负样本!这就是极不均匀的数据集。直观地说,在点A处,分类器将1600 (1520+80)个样本预测为positive,而其中实际上只有80个是真正的positive。 我们凭直觉来看,其实这个分类器并不好。但由于真正negative instances的数量远远大约positive,ROC的结果却“看上去很美”,因为这时FPR因为负例基数大的缘故依然很小。所以,在这种情况下,PRC更能体现本质。

ROC曲线与PRC曲线表现差异的原因
  为什么会有上面分析到的两者差异呢?下面摘自引用[1]的解释很清楚,FPR 和 TPR (Recall) 只与真实的正例或负例中的一个相关(可以从他们的计算公式中看到),而其他指标如Precision则同时与真实的正例与负例都有关,即下面文字说的“both columns”,这可以结合混淆矩阵和各指标的计算公式明显看到。
  ROC曲线 vs Precision-Recall曲线
  思考
1、ctr预估显然是负例 远多于 正例,那为什么业界还普遍用ROC曲线而不是PRC曲线下的面积作为性能指标 ?

思考:

我的思考是,对于ctr预估这个问题,我们需要一个于排序强相关的衡量指标,ROC与PRC都可以,而上面介绍了相比PRC,ROC具有鲁棒性的优势。ROC的缺点是对于ctr这种负例远多于正例的问题,其显示的图像和对应的AUC过于“乐观”,不能很好地反映分类器的真实性能,这意味着,即使算法的AUC约为0.8,看起来已经是一个比较好的值的,算法性能应该很不错,但是PRC曲线告诉我们,还没得很呢,还有很大提升空间。

但是,对于ctr问题本身而言,AUC的高低确实可以衡量两个算法的性能优劣,算法A的AUC大于算法B,那么绝大部分情况下可以认为算法A优于算法B,即以AUC为指标进行模型的快速迭代和选择依然是合理的。

另外很重要的一点是,相比于PRC曲线下的面积计算,AUC的计算更容易。

2、随机猜测的PRC曲线是怎么样的?