SVR推导

SVR推导

目标函数:

minw,b12w2+Ci=1l(ξi+ξi)s.t.{yi<w,xi>bε+ξi<w,xi>+byiε+ξiξi,ξi0 \min_{w,b}\frac12||w||^2+C\sum_{i=1}^l(\xi_i+\xi_i^*) \\ s.t. \begin{cases} y_i-<w,x_i>-b&\leq\varepsilon+\xi_i \\ <w,x_i>+b-y_i &\leq\varepsilon+\xi_i^* \\ \xi_i,\xi_i^* &\geq0 \end{cases}

拉格朗日函数

L=12w2+Ci=1l(ξi+ξi)i=1l(ηiξi+ηiξi)i=1lαi(ε+ξiyi+<w,xi>+b)i=1lαi(ε+ξi+yi<w,xi>b)s.t.   αi(),ηi()0L=\frac12||w||^2+C\sum_{i=1}^l(\xi_i+\xi_i^*)-\sum_{i=1}^l(\eta_i\xi_i+\eta_i^*\xi_i^*) \\ -\sum_{i=1}^l\alpha_i(\varepsilon+\xi_i-y_i+<w,x_i>+b)\\ -\sum_{i=1}^l\alpha_i^*(\varepsilon+\xi_i^*+y_i-<w,x_i>-b)\\ s.t.\ \ \ \alpha_i^{(*)},\eta_i^{(*)}\geq 0

原问题化为

minw,bmaxαi(),ηi()L(w,b,ξi,ξi,αi,αi)\min_{w,b}\max_{\alpha_i^{(*)},\eta_i^{(*)}}L(w,b, \xi_i,\xi_i^*,\alpha_i,\alpha_i^*)

对偶问题

maxαi(),ηi()minw,bL(w,b,ξi,ξi,αi,αi)\max_{\alpha_i^{(*)},\eta_i^{(*)}}\min_{w,b}L(w,b, \xi_i,\xi_i^*,\alpha_i,\alpha_i^*)
KKT{αi(ε+ξiyi+<w,xi>+b)=0αi(ε+ξi+yi<w,xi>b)=0(Cαi)ξi=0(Cαi)ξi=0 KKT条件 \begin{cases} \alpha_i(\varepsilon+\xi_i-y_i+<w,x_i>+b)=0 \\ \alpha_i^*(\varepsilon+\xi_i^*+y_i-<w,x_i>-b)=0 \\ (C-\alpha_i)\xi_i=0\\ (C-\alpha_i^*)\xi_i^*=0\\ \end{cases}

求导令其为零

Lb=i=1l(αiαi)=0\frac{\partial L}{\partial b}=\sum_{i=1}^l(\alpha_i^*-\alpha_i)=0
Lw=wi=1l(αiαi)xi=0\frac{\partial L}{\partial w}=w-\sum_{i=1}^l(\alpha_i-\alpha_i^*)x_i=0
Lξi()=Cαi()ηi()=0\frac{\partial L}{\partial \xi_i^{(*)}}=C-\alpha_i^{(*)}-\eta_i^{(*)}=0

回归方程

w=i=1l(αiαi)xiw=\sum_{i=1}^l(\alpha_i-\alpha_i^*)x_i
f(x)=i=1l(αiαi)<xi,x>+bf(x)=\sum_{i=1}^l(\alpha_i-\alpha_i^*)<x_i,x>+b

SMO完事