import numpy as np
from numpy import genfromtxt
from sklearn import linear_model
import matplotlib.pyplot as plt
# 读入数据
data = genfromtxt("longley.csv",delimiter=',')
# 切分数据
x_data = data[1:,2:]
y_data = data[1:,1]
# 创建模型
# 默认生成50个值
alphas_to_test = np.linspace(0.001, 1)
# 创建模型,保存误差值 alphas 为岭回归系数 RidgeCV 交叉验证法
model = linear_model.RidgeCV(alphas=alphas_to_test, store_cv_values=True)
model.fit(x_data, y_data)
# 岭系数
print(model.alpha_)
# loss值
print(model.cv_values_.shape)
0.40875510204081633
(16, 50)
# 画图
# 岭系数跟loss值的关系
plt.plot(alphas_to_test, model.cv_values_.mean(axis=0))
# 选取的岭系数值的位置
plt.plot(model.alpha_, min(model.cv_values_.mean(axis=0)),'ro')
plt.show()
model.predict(x_data[2,np.newaxis])
array([88.11216213])

import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
# 读入数据
data = genfromtxt(r"longley.csv")
# 切分数据
x_data = data[1:,2:]
y_data = data[1:,1,np.newaxis]
# 给样本添加偏置项
X_data = np.concatenate((np.ones((16,1)),x_data),axis=1)
# 岭回归标准方程法求解回归参数
def weights(xArr, yArr, lam=0.2):
xMat = np.mat(xArr)
yMat = np.mat(yArr)
xTx = xMat.T*xMat # 矩阵乘法
rxTx = xTx + np.eye(xMat.shape[1])*lam
# 计算矩阵的值,如果值为0,说明该矩阵没有逆矩阵
if np.linalg.det(rxTx) == 0.0:
print("This matrix cannot do inverse")
return
# xTx.I为xTx的逆矩阵
ws = rxTx.I*xMat.T*yMat
return ws
#参数
ws = weights(X_data,y_data)
# 计算预测值
np.mat(X_data)*np.mat(ws)
matrix([[ 83.55075226],
[ 86.92588689],
[ 88.09720227],
[ 90.95677622],
[ 96.06951002],
[ 97.81955375],
[ 98.36444357],
[ 99.99814266],
[103.26832266],
[105.03165135],
[107.45224671],
[109.52190685],
[112.91863666],
[113.98357055],
[115.29845063],
[117.64279933]])