并发编程16-Callable,FutureTask

1.概述

  • 通过实现Callback接口,并用Future可以来接收多线程的执行结果
  • Future表示一个可能还没有完成的异步任务的结果,针对这个结果可以添加Callback以便在任务执行成功或失败后作出相应的操作。

2.示例

2.1 核心代码

Callable<Integer> call = new Callable<Integer>();  
FutureTask<Integer> task = new FutureTask<>(call);  
task.get();  

2.2 简要示例


import java.util.concurrent.Callable;
import java.util.concurrent.FutureTask;

public class FutureThread {


    /**
     * Callalbe和Runnable的区别
     * Runnable run方法是被线程调用的,在run方法是异步执行的
     * Callable的call方法,不是异步执行的,是由Future的run方法调用的
     */
    public static void main(String[] args) throws Exception {

        Callable<Integer> call = new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                System.out.println("正在计算结果...");
                Thread.sleep(3000);
                return 1;
            }
        };

        FutureTask<Integer> task = new FutureTask<>(call);

        Thread thread = new Thread(task);
        thread.start();

        // do something
        System.out.println(" 干点别的...");

        Integer result = task.get();

        System.out.println("拿到的结果为:" + result);

    }

}

3. Callable与Runnable

3.1 源码分析

  • Runnable 的run方法为void
public interface Runnable {
    public abstract void run();
}

  • Callable 泛型接口,call()函数返回的类型就是传递进来的V类型
public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

3.2 接口使用

Callable一般配合ExecutorService来使用的,在ExecutorService接口中声明了若干个submit方法的重载版本

<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);

3.3 Callable和Runnable的区别

接口可以继承多个接口. interface RunnableFuture就是这样.
Callable和Runnable的区别
Runnable是线程调用的,再ruan方法中是异步执行的,
Callable的call方法,不是异步执行的,是由Future的run方法调用的(耗时操作)

4 Future及相关类关系

4.1 Future及相关类图

并发编程16-Callable,FutureTask

4.2 Future相关类介绍

  • RunnableFuture

这个接口同时继承Future接口和Runnable接口,在成功执行run()方法后,可以通过Future访问执行结果。这个接口都实现类是FutureTask,一个可取消的异步计算,这个类提供了Future的基本实。如果计算没有完成,get方法会阻塞,一旦计算完成,这个计算将不能被重启和取消,除非调用runAndReset方法。

  • FutureTask

能用来包装一个Callable或Runnable对象,因为它实现了Runnable接口,而且它能被传递到Executor进行执行。为了提供单例类,这个类在创建自定义的工作类时提供了protected构造函数。

  • SchedualFuture
    这个接口表示一个延时的行为可以被取消。通常一个安排好的future是定时任务SchedualedExecutorService的结果

  • CompleteFuture
    一个Future类是显示的完成,而且能被用作一个完成等级,通过它的完成触发支持的依赖函数和行为。当两个或多个线程要执行完成或取消操作时,只有一个能够成功。

  • ForkJoinTask
    基于任务的抽象类,可以通过ForkJoinPool来执行。一个ForkJoinTask是类似于线程实体,但是相对于线程实体是轻量级的。大量的任务和子任务会被ForkJoinPool池中的真实线程挂起来,以某些使用限制为代价。

5.Future

5.1 Future概述

Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。

也就是说Future提供了三种功能:
  1)判断任务是否完成;
  2)能够中断任务;
  3)能够获取任务执行结果。
  因为Future只是一个接口,所以是无法直接用来创建对象使用的,因此就有了下面的FutureTask。

5.2 Future源码

public interface Future<V> {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}
  • cancel
    cancel方法用来取消任务,如果取消任务成功则返回true,如果取消任务失败则返回false。
    • 参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务,如果设置true,则表示可以取消正在执行过程中的任务。如果任务已经完成,则无论mayInterruptIfRunning为true还是false,此方法肯定返回false,即如果取消已经完成的任务会返回false;如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false;如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true。
  • isCancelled方法表示任务是否被取消成功,如果在任务正常完成前被取消成功,则返回 true。
  • isDone方法表示任务是否已经完成,若任务完成,则返回true;
  • get()方法用来获取执行结果,这个方法会产生阻塞,会一直等到任务执行完毕才返回;
  • get(long timeout, TimeUnit unit)用来获取执行结果,如果在指定时间内,还没获取到结果,就直接返回null。

5.FutureTask

5.1 FutureTask主要方法

  • FutureTask(Callable callable)
  • run()
  • V get()
  • FutureTask源码
public class FutureTask<V> implements RunnableFuture<V>
//FutureTask类实现了RunnableFuture接口,我们看一下RunnableFuture接口的实现:
public interface RunnableFuture<V> extends Runnable, Future<V> {
    void run();
}
   
public FutureTask(Callable<V> callable) {
}
public FutureTask(Runnable runnable, V result) {
}

 public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }
    
   public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        return report(s);
    }



可以看出RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现了RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。
事实上,FutureTask是Future接口的一个唯一实现类。

5.2.自己实现Future及设计模式

SelfFutureThread

6.源码综合分析

  • Callable
@FunctionalInterface
public interface Callable<V> {
    V call() throws Exception;
}
  • RunnableFuture
public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}


  • Thread
package java.lang;
public class Thread implements Runnable {
    public Thread(Runnable target) {
        init(null, target, "Thread-" + nextThreadNum(), 0);
    }

}
  • FutureTask
//FutureTask继承RunnableFuture,RunnableFuture继承Runnable和Future
public class FutureTask<V> implements RunnableFuture<V> {

     /*
     * NEW -> COMPLETING -> NORMAL
     * NEW -> COMPLETING -> EXCEPTIONAL
     * NEW -> CANCELLED
     * NEW -> INTERRUPTING -> INTERRUPTED
     *
    private volatile int state;
    private static final int NEW          = 0;//初始
    private static final int COMPLETING   = 1;//执行中
    private static final int NORMAL       = 2;//正常完整
    private static final int EXCEPTIONAL  = 3;//异常完成
    private static final int CANCELLED    = 4;//取消
    private static final int INTERRUPTING = 5;//中断中
    private static final int INTERRUPTED  = 6;//已中断

     
   private Callable<V> callable;

   private Object outcome; // non-volatile, protected by state reads/writes

   private volatile Thread runner;

   private volatile WaitNode waiters;

 //构造方法1-传Callable
  public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

 //构造方法2-传Runnable和返回结果-(最终把runnable和返回值转换为callable)
     public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

     public void run() {
       /*
       //新的刚运行线程就不是new就return
       //如果是new: runnerOffset对应本类FutureTask的runner属性,将本线程设置为本类runner(比较前的期望值为null).如果设置为失败也返回.
       关于compareAndSwapObject的补充:
       [这个方法有四个参数,其中第一个参数为需要改变的对象,第二个为偏移量(即之前求出来的valueOffset的值),第三个参数为期待的值,第四个为更新后的值。
       整个方法的作用即为若调用该方法时,value的值与expect这个值相等,那么则将value修改为update这个值,并返回一个true,
       如果调用该方法时,value的值与expect这个值不相等,那么不做任何操作,并范围一个false。]
       */
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
	    //如果state为new,则执行callable的call方法
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
		    //发生异常时还要设置异常
                    setException(ex);
                }
		//如果正常执行没有发生异常
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

   //获取值1,获取值的时候,待处理的可能还没开始进行,也可能进行完了.
   public V get() throws InterruptedException, ExecutionException {
        int s = state;
	//没完成状态,等待
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
	//s大于COMPLETING,准备返回结果
        return report(s);
    }

   //获取值2
   public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        //如果没有完成
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        //s大于COMPLETING,准备返回结果    
        return report(s);
    }
    
    //等待线程运行结果
    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        //截止超时时刻点
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        //不停的循环
        for (;;) {
           //如果线程终止则移除
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }
            // 
            int s = state;
            //正常或者异常或取消或中断
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            //如果执行线程为正在执行中,则当前循环线程放弃cpu执行权等一会,
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            //第一次进来,q为空,创建等待队列    
            else if (q == null)
                q = new WaitNode();
            //如果q不等于空,则走这里在waiter队列后加一个节点. 
            else if (!queued)  
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q); //如果设置成功,则queued变为true
            else if (timed) {
                //如果超时了
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                //没有超时,则等待
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this); //线程等待
        }
    }
    

  //get调用report返回运行结果值,从outcome中取回返回值
   private V report(int s) throws ExecutionException {
        Object x = outcome;
	//正常
        if (s == NORMAL)
            return (V)x;
	 //取消
        if (s >= CANCELLED)
            throw new CancellationException();
        //异常
        throw new ExecutionException((Throwable)x);
    }

     //设置异常
     protected void setException(Throwable t) {
     //将状态从new设置为COMPLETING
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
	   //异常放到outcome
            outcome = t;
	    //再将状态设置为EXCEPTIONAL
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();
        }
    }

    //设置正常
     protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v; //设置返回值
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

   //叫醒等待的线程节点
    private void finishCompletion() {
        // assert state > COMPLETING;
        //等待等列不为空
        for (WaitNode q; (q = waiters) != null;) {
           //将等待标志位设置为空(下一个等待可以加入了.)
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
               //循环就能将所有的q唤醒了
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);  //叫醒
                    }
                    WaitNode next = q.next;
                    if (next == null)//没有下一个,直接结束
                        break;
                    q.next = null; // unlink to help gc,准备将next设置为q,则next没有了.断掉q的next
                    q = next;//next就成为q了
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }
    
    
    //又一个内部类,递归结构(next又是一个WaitNode)
    static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

}
  • Executors
 package java.util.concurrent;
public class Executors {
   //将runnable转换为callable,FutureTask的构造方法2调用
    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }

   //实现Callable,有call方法.也就是一个callable
   //call执行的内容就是runnable的run方法,而返回值就是resutl.
     static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }



     private static final sun.misc.Unsafe UNSAFE;
    private static final long stateOffset;
    private static final long runnerOffset;
    private static final long waitersOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = FutureTask.class;
            stateOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("state"));
            runnerOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("runner"));
            waitersOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("waiters"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }

}

7.更多示例

7.1 使用Callable+Future获取执行结果

  • ExecutorTask核心代码
ExecutorService executor = Executors.newCachedThreadPool();
MyTask task = new MyTask();
Future<Integer> result = executor.submit(task);
executor.shutdown();
  • ExecutorTask

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ExecutorTask {
    public static void main(String[] args) {
        ExecutorService executor = Executors.newCachedThreadPool();
        MyTask task = new MyTask();
        Future<Integer> result = executor.submit(task);
        executor.shutdown();

        try {
            Thread.sleep(1000);
        } catch (InterruptedException e1) {
            e1.printStackTrace();
        }

        System.out.println("主线程在执行任务");

        try {
            System.out.println("task运行结果"+result.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }

        System.out.println("所有任务执行完毕");
    }
}


import java.util.concurrent.Callable;

class MyTask implements Callable<Integer> {
    @Override
    public Integer call() throws Exception {
        System.out.println("子线程在进行计算");
        Thread.sleep(3000);
        int sum = 0;
        for(int i=0;i<100;i++)
            sum += i;
        return sum;
    }
}