Dual Simplex Method

Dual Simplex Method

Introduction

Dual Simplex Method

Primal Problem

Maximize Z = 3 x 1 + 5 x 2 Z=3 x_{1}+5 x_{2} Z=3x1+5x2
subject to
x 1 ≤ 4 2 x 2 ≤ 12 3 x 1 + 2 x 2 ≤ 18 \begin{aligned} x_{1} & \leq 4 \\ 2 x_{2} & \leq 12 \\ 3 x_{1}+2 x_{2} & \leq 18 \end{aligned} x12x23x1+2x241218
and
x 1 ≥ 0 , x 2 ≥ 0 x_{1} \geq 0, \quad x_{2} \geq 0 x10,x20

Graphical Analysis

Dual Simplex Method

Solve primal problem using simplex method

Dual Simplex Method

Dual Problem

 Maximize  Z = − 4 y 1 − 12 y 2 − 18 y 3 \text { Maximize } \quad Z=-4 y_{1}-12 y_{2}-18 y_{3}  Maximize Z=4y112y218y3
subject to
y 1 + 3 y 3 ≥ 3 2 y 2 + 2 y 3 ≥ 5 \begin{array}{r} y_{1}+3 y_{3} \geq 3 \\ 2 y_{2}+2 y_{3} \geq 5 \end{array} y1+3y332y2+2y35
and
y 1 ≥ 0 , y 2 ≥ 0 , y 3 ≥ 0 y_{1} \geq 0, \quad y_{2} \geq 0, \quad y_{3} \geq 0 y10,y20,y30

Solve dual problem using dual simplex method

Dual Simplex Method

Compare simplex method and dual simplex method

  1. The simplex method deals directly with basic solutions in the primal problem that are primal feasible( B − 1 b ≥ 0 B^{-1} b \geq 0 B1b0) but not dual feasible. It then moves toward an optimal solution by striving to achieve dual feasibility (optimality test, C − C B B − 1 A ≤ 0 C-C_{B} B^{-1} A \leq 0 CCBB1A0) providing primal feasible(minimum ratio, B − 1 b ≥ 0 B^{-1} b \geq 0 B1b0).
  2. The dual simplex method deals with basic solutions in the primal problem that are dual feasible( C − C B B − 1 A ≤ 0 C-C_{B} B^{-1} A \leq 0 CCBB1A0) but not primal feasible. It then moves toward an optimal solution by striving to achieve primal feasibility (optimality test, B − 1 b ≥ 0 B^{-1} b \geq 0 B1b0) providing dual feasible(minimum ratio, C − C B B − 1 A ≤ 0 C-C_{B} B^{-1} A \leq 0 CCBB1A0).
  3. According to the strong duality, both primal problem and dual problem approaches optimal solution when both are feasible.

Initial and later implex tableau in matrix form

Dual Simplex Method