java11 新特性 详解

引言:

点击--》java10 新特性 详解

点击--》java9 新特性 详解

点击--》java8 新特性 详解

正题:

    JDK11是一个长期支持版本(LTS,Long-Term-Support),发布于 2018年9月26日,是一个跨跃性版本,等同于java8一样,而jdk9和10将成为历史小版本,2018年更新后的jdk8,也即将收费。

1、增强局部变量类型推断var

Consumer<String> consumer = t -> System.out.println(t.toUpperCase());
Consumer<String> consumer = (var t) -> System.out.println(t.toUpperCase());

错误的形式:必须要有类型,可以加上var
Consumer<String> consumer = (@Deprecated t) ->System.out.println(t.toUpperCase())
正确的形式
Consumer<String> consumer = (@Deprecated var t) ->System.out.println(t.toUpperCase())

2、增加一些实用的API

自JDK9和JDK10都为java增加了许多的API,如今JDK11又增加了许多字符串自带方法,如下

@Test
public void contextLoads() {
    String str = "woshidage";
    boolean isblank = str.isBlank();  //判断字符串是空白
    boolean isempty = str.isEmpty();  //判断字符串是否为空
    String  result1 = str.strip();    //首位空白
    String  result2 = str.stripTrailing();  //去除尾部空白
    String  result3 = str.stripLeading();  //去除首部空白
    String  copyStr = str.repeat(2);  //复制几遍字符串
    long  lineCount = str.lines().count();  //行数统计

    System.out.println(isblank);
    System.out.println(isempty);
    System.out.println(result1);
    System.out.println(result2);
    System.out.println(result3);
    System.out.println(copyStr);
    System.out.println(lineCount);
}

结果为:

java11 新特性 详解

3、移除和废弃的内容

3.1 移除项

3.1.1 移除了com.sun.awt.AWTUtilities

3.1.2 移除了sun.misc.Unsafe.defineClass,使用java.lang.invoke.MethodHandles.Lookup.defineClass来替代

3.1.3 移除了Thread.destroy()以及 Thread.stop(Throwable)方法

3.1.4 移除了sun.nio.ch.disableSystemWideOverlappingFileLockCheck、sun.locale.formatasdefault属性

3.1.5 移除了jdk.snmp模块

3.1.6 移除了javafx,openjdk估计是从java10版本就移除了,oracle jdk10还尚未移除javafx,而java11版本则oracle的jdk版本也移除了javafx

3.1.7 移除了Java Mission Control,从JDK中移除之后,需要自己单独下载

3.1.8 移除了这些Root Certificates :Baltimore Cybertrust Code Signing CA,SECOM ,AOL and Swisscom

3.2 废弃项

3.2.1 -XX+AggressiveOpts选项

3.2.2 -XX:+UnlockCommercialFeatures

3.2.3 -XX:+LogCommercialFeatures选项也不再需要

4.HttpClient加强方法

现在 Java 自带了这个 HTTP Client API,我们以后还有必要用 Apache 的 HttpClient 工具包吗?

4.1 需要远程调用的接口

@RequestMapping(value = "/dshjbca")
public String test1(){
    return "dfs";
}

4.2 HttpClient调用该接口

下面两种方法都可以

//同步调用
@Test
public void test2() throws IOException, InterruptedException {

    HttpClient client             = HttpClient.newHttpClient();
    HttpRequest request           = HttpRequest.newBuilder(URI.create("")).build();
    BodyHandler<String>  handler  = HttpResponse.BodyHandlers.ofString();
    HttpResponse<String> response = client.send(request,handler);
    String body                   = response.body();
    System.out.println(body);
}

//异步调用
@Test
public void test3() throws IOException, InterruptedException, ExecutionException {

    HttpClient client             = HttpClient.newHttpClient();
    HttpRequest request           = HttpRequest.newBuilder(URI.create("")).build();
    BodyHandler<String>  handler  = HttpResponse.BodyHandlers.ofString();
    CompletableFuture<HttpResponse<String>> response = client.sendAsync(request,handler);
    HttpResponse<String> result   = response.get();
    String body                   = result.body();
    System.out.println(body);
}

结果:

java11 新特性 详解

5、Unicode 10

Unicode 10 增加了8518个字符, 总计达到了136690个字符. 并且增加了4个脚本.同时还有56个新的emoji表情符号.

6、Remove the JavaEE and CORBA Moudles

在java11中移除了不太使用的JavaEE模块和CORBA技术,在java11中将java9标记废弃的Java EE及CORBA模块移除掉

6.1 xml相关

6.1.1 java.xml.ws,

6.1.2 java.xml.bind,

6.1.3 java.xml.ws,

6.1.4 java.xml.ws.annotation,

6.1.5 jdk.xml.bind,

6.1.6 jdk.xml.ws被移除,

只剩下java.xml,java.xml.crypto,jdk.xml.dom这几个模块

6.2 

6.2.1 java.corba,

6.2.2 java.se.ee,

6.2.3 java.activation,

6.2.4 java.transaction被移除,但是java11新增一个java.transaction.xa模块

7、JEP : 335 : Deprecate the Nashorn JavaScript Engine

废除Nashorn javascript引擎,在后续版本准备移除掉,有需要的可以考虑使用GraalVM

8、JEP : 336 : Deprecate the Pack200 Tools and API

Java5中带了一个压缩工具:Pack200,这个工具能对普通的jar文件进行高效压缩。其  实现原理是根据Java类特有的结构,合并常数  池,去掉无用信息等来实现对java类的高效压缩。由于是专门对Java类进行压缩的,所以对普通文件的压缩和普通压缩软件没有什么两样,但是对于Jar  文件却能轻易达到10-40%的压缩率。这在Java应用部署中很有用,尤其对于移动Java计算,能够大大减小代码下载量。

Java5中还提供了这一技术的API接口,你可以将其嵌入到你的程序中使用。使用的方法很简单,下面的短短几行代码即可以实现jar的压缩和解压:

压缩

Packer packer=Pack200.newPacker();

OutputStream output=new BufferedOutputStream(new  FileOutputStream(outfile));

packer.pack(new JarFile(jarFile), output);

output.close();

解压

Unpacker unpacker=Pack200.newUnpacker();

output=new JarOutputStream(new FileOutputStream(jarFile));

unpacker.unpack(pack200File, output);

output.close();

Pack200的压缩和解压缩速度是比较快的,而且压缩率也是很惊人的,在我是使用  的包4.46MB压缩后成了1.44MB(0.322%),而且随着包的越大压缩率会根据明显,据说如果jar包都是class类可以压缩到1/9的大  小。其实JavaWebStart还有很多功能,例如可以按不同的jar包进行lazy下载和 单独更新,设置可以根据jar中的类变动进行class粒度的下载。但是在java11中废除了pack200以及unpack200工具以及java.util.jar中的Pack200 API。因为Pack200主要是用来压缩jar包的工具,由于网络下载速度的提升以及java9引入模块化系统之后不再依赖Pack200,因此这个版本将其移除掉。

9、新的Epsilon垃圾收集器

A NoOp Garbage Collector JDK上对这个特性的描述是: 开发一个处理内存分配但不实现任何实际内存回收机制的GC, 一旦可用堆内存用完, JVM就会退出.

如果有System.gc()调用, 实际上什么也不会发生(这种场景下和-XX:+DisableExplicitGC效果一样), 因为没有内存回收, 这个实现可能会警告用户尝试强制GC是徒劳.

用法 : -XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC

选项-XX:+UseEpsilonGC, 程序很快就因为堆空间不足而退出

原因 :提供完全被动的GC实现, 具有有限的分配限制和尽可能低的延迟开销,但代价是内存占用和内存吞吐量, java实现可广泛选择高度可配置的GC实现. 各种可用的收集器最终满足不同的需求, 即使它们的可配置性使它们的功能相交. 有时更容易维护单独的实现, 而不是在现有GC实现上堆积另一个配置选项.

主要用途如下 :

   9.1 性能测试(它可以帮助过滤掉GC引起的性能假象)

   9.2 内存压力测试(例如,知道测试用例 应该分配不超过1GB的内存, 我们可以使用-Xmx1g –XX:+UseEpsilonGC, 如果程序有问题, 则程序会崩溃)

   9.3 非常短的JOB任务(对象这种任务, 接受GC清理堆那都是浪费空间)

   9.4 VM接口测试

   9.5 Last-drop 延迟&吞吐改进

10、ZGC

ZGC, 这应该是JDK11最为瞩目的特性, 没有之一. 但是后面带了Experimental, 说明这还不建议用到生产环境

GC暂停时间不会超过10ms,既能处理几百兆的小堆, 也能处理几个T的大堆(OMG),和G1相比, 应用吞吐能力不会下降超过15%,为未来的GC功能和利用colord指针以及Load barriers优化奠定基础,初始只支持64位系统

ZGC的设计目标是:支持TB级内存容量,暂停时间低(<10ms),对整个程序吞吐量的影响小于15% 将来还可以扩展实现机制,以支持不少令人兴奋的功能,例如多层堆(即热对象置于DRAM和冷对象置于NVMe闪存),或压缩堆。

GC是java主要优势之一,GC停顿太长, 就会开始影响应用的响应时间.消除或者减少GC停顿时长, java将对更广泛的应用场景是一个更有吸引力的平台. 此外, 现代系统中可用内存不断增长,用户和程序员希望JVM能够以高效的方式充分利用这些内存, 并且无需长时间的GC暂停时间

用法 : -XX:+UnlockExperimentalVMOptions –XX:+UseZGC, 因为ZGC还处于实验阶段, 所以需要通过JVM参数来解锁这个特性

11、完全支持Linux容器(包括Docker)

许多运行在Java虚拟机中的应用程序(包括Apache Spark和Kafka等数据服务以及传统的企业应用程序)都可以在Docker容器中运行。但是在Docker容器中运行Java应用程序一直存在一个问题,那就是在容器中运行JVM程序在设置内存大小和CPU使用率后,会导致应用程序的性能下降。这是因为Java应用程序没有意识到它正在容器中运行。随着Java 10的发布,这个问题总算得以解决,JVM现在可以识别由容器控制组(cgroups)设置的约束。可以在容器中使用内存和CPU约束来直接管理Java应用程序,其中包括:

遵守容器中设置的内存限制

在容器中设置可用的CPU

在容器中设置CPU约束

Java 10的这个改进在Docker for Mac、Docker for Windows以及Docker Enterprise Edition等环境均有效。

容器的内存限制

在Java 9之前,JVM无法识别容器使用标志设置的内存限制和CPU限制。而在Java 10中,内存限制会自动被识别并强制执行。Java将服务器类机定义为具有2个CPU和2GB内存,以及默认堆大小为物理内存的1/4。

12、支持G1上的并行完全垃圾收集

对于 G1 GC,相比于 JDK 8,升级到 JDK 11 即可免费享受到:并行的 Full GC,快速的 CardTable 扫描,自适应的堆占用比例调整(IHOP),在并发标记阶段的类型卸载等等。这些都是针对 G1 的不断增强,其中串行 Full GC 等甚至是曾经被广泛诟病的短板,你会发现 GC 配置和调优在 JDK11 中越来越方便。

13、Java Flight Recorder

Flight Recorder源自飞机的黑盒子,Flight Recorder以前是商业版的特性,在java11当中开源出来,它可以导出事件到文件中,之后可以用Java Mission Control来分析。可以在应用启动时配置java -XX:StartFlightRecording,或者在应用启动之后,使用jcmd来录制,比如

$ jcmd <pid> JFR.start

$ jcmd <pid> JFR.dump filename=recording.jfr

$ jcmd <pid> JFR.stop

我们知道在生产系统进行不同角度的 Profiling,有各种工具、框架,但是能力范围、可靠性、开销等,大都差强人意,要么能力不全面,要么开销太大,甚至不可靠可能导致 Java 应用进程宕机。而 JFR 是一套集成进入 JDKJVM 内部的事件机制框架,通过良好架构和设计的框架,硬件层面的极致优化,生产环境的广泛验证,它可以做到极致的可靠和低开销。在 SPECjbb2015 等基准测试中,JFR 的性能开销最大不超过 1%,所以,工程师可以基本没有心理负担地在大规模分布式的生产系统使用,这意味着,我们既可以随时主动开启 JFR 进行特定诊断,也可以让系统长期运行 JFR,用以在复杂环境中进行“After-the-fact”分析。还需要苦恼重现随机问题吗?JFR 让问题简化了很多。在保证低开销的基础上,JFR 提供的能力也令人眼前一亮,例如:我们无需 BCI 就可以进行 Object Allocation Profiling,终于不用担心 BTrace 之类把进程搞挂了。对锁竞争、阻塞、延迟,JVM GCSafePoint 等领域,进行非常细粒度分析。甚至深入 JIT Compiler 内部,全面把握热点方法、内联、逆优化等等。JFR 提供了标准的 JavaC++ 等扩展 API,可以与各种层面的应用进行定制、集成,为复杂的企业应用栈或者复杂的分布式应用,提供 All-in-One 解决方案。而这一切都是内建在 JDK JVM 内部的,并不需要额外的依赖,开箱即用。

 

番外:Java 11ZGC为何如此高效?

Java 11的新功能已经完全冻结,其中有些功能绝对非常令人兴奋

Java 11包含一个全新的垃圾收集器--ZGC,它由Oracle开发,承诺在数TB的堆上具有非常低的暂停时间。

那么为什么需要新GC呢?毕竟Java 10已经有四种发布多年的垃圾收集器,并且几乎都是无限可调的。 换个角度看,G12006年时引入Hotspot VM的。当时最大的AWS实例有1 vCPU1.7GB内存,而今天AWS很乐意租给你一个x1e.32xlarge实例,该类型实例有128vCPU3,904GB内存。 ZGC的设计目标是:支持TB级内存容量,暂停时间低(<10ms),对整个程序吞吐量的影响小于15% 将来还可以扩展实现机制,以支持不少令人兴奋的功能,例如多层堆(即热对象置于DRAM和冷对象置于NVMe闪存),或压缩堆。

GC术语

为了理解ZGC如何匹配现有收集器,以及如何实现新GC,需要先了解一些术语。最基本的垃圾收集涉及识别不再使用的内存并使其可重用。现代收集器在几个阶段进行这一过程,对于这些阶段我们往往有如下描述:

1、并行- 在JVM运行时,同时存在应用程序线程和垃圾收集器线程。 并行阶段是由多个gc线程执行,即gc工作在它们之间分配。 不涉及GC线程是否需要暂停应用程序线程。

2、串行- 串行阶段仅在单个gc线程上执行。与之前一样,它也没有说明GC线程是否需要暂停应用程序线程。

3、STW - STW阶段,应用程序线程被暂停,以便gc执行其工作。 当应用程序因为GC暂停时,这通常是由于Stop The World阶段。

4、并发 -如果一个阶段是并发的,那么GC线程可以和应用程序线程同时进行。 并发阶段很复杂,因为它们需要在阶段完成之前处理可能使工作无效(译者注:因为是并发进行的,GC线程在完成一阶段的同时,应用线程也在工作产生操作内存,所以需要额外处理)的应用程序线程。

5、增量 -如果一个阶段是增量的,那么它可以运行一段时间之后由于某些条件提前终止,例如需要执行更高优先级的gc阶段,同时仍然完成生产性工作。 增量阶段与需要完全完成的阶段形成鲜明对比。

权衡

值得指出的是,所有这些属性都需要权衡利弊。 例如,并行阶段将利用多个gc线程来执行工作,但这样做会导致线程协调的开销。 同样,并发阶段不会暂停应用程序线程,但可能涉及更多的开销和复杂性,才能同时处理使其工作无效的应用程序线程。

ZGC

现在我们了解了不同gc阶段的属性,让我们继续探讨ZGC的工作原理。 为了实现其目标,ZGCHotspot Garbage Collectors增加了两种新技术:着色指针和读屏障。

着色指针

着色指针是一种将信息存储在指针(或使用Java术语引用)中的技术。因为在64位平台上(ZGC仅支持64位平台),指针可以处理更多的内存,因此可以使用一些位来存储状态。 ZGC将限制最大支持4Tb堆(42-bits),那么会剩下22位可用,它目前使用了4位: finalizable remap mark0mark1 我们稍后解释它们的用途。

着色指针的一个问题是,当您需要取消着色时,它需要额外的工作(因为需要屏蔽信息位)。 SPARC这样的平台有内置硬件支持指针屏蔽所以不是问题,而对于x86平台来说,ZGC团队使用了简洁的多重映射技巧。

多重映射

要了解多重映射的工作原理,我们需要简要解释虚拟内存和物理内存之间的区别。 物理内存是系统可用的实际内存,通常是安装的DRAM芯片的容量。 虚拟内存是抽象的,这意味着应用程序对(通常是隔离的)物理内存有自己的视图。 操作系统负责维护虚拟内存和物理内存范围之间的映射,它通过使用页表和处理器的内存管理单元(MMU)和转换查找缓冲器(TLB)来实现这一点,后者转换应用程序请求的地址。多重映射涉及将不同范围的虚拟内存映射到同一物理内存。 由于设计中只有一个remapmark0mark1在任何时间点都可以为1,因此可以使用三个映射来完成此操作。 ZGC源代码中有一个很好的图表可以说明这一点。

读屏障

读屏障是每当应用程序线程从堆加载引用时运行的代码片段(即访问对象上的非原生字段non-primitive field):

void printName( Person person ) {

String name = person.name; // 这里触发读屏障

// 因为需要从heap读取引用

System.out.println(name); // 这里没有直接触发读屏障

}

在上面的代码中,String name = person.name 访问了堆上的person引用,然后将引用加载到本地的name变量。此时触发读屏障。 Systemt.out那行不会直接触发读屏障,因为没有来自堆的引用加载(name是局部变量,因此没有从堆加载引用)。 但是Systemout,或者println内部可能会触发其他读屏障。

这与其他GC使用的写屏障形成对比,例如G1。读屏障的工作是检查引用的状态,并在将引用(或者甚至是不同的引用)返回给应用程序之前执行一些工作。 ZGC中,它通过测试加载的引用来执行此任务,以查看是否设置了某些位。 如果通过了测试,则不执行任何其他工作,如果失败,则在将引用返回给应用程序之前执行某些特定于阶段的任务。

标记

现在我们了解了这两种新技术是什么,让我们来看看ZGGC循环。

GC循环的第一部分是标记。标记包括查找和标记运行中的应用程序可以访问的所有堆对象,换句话说,查找不是垃圾的对象。

ZGC的标记分为三个阶段。 第一阶段是STW,其中GC roots被标记为活对象。 GC roots类似于局部变量,通过它可以访问堆上其他对象。 如果一个对象不能通过遍历从roots开始的对象图来访问,那么应用程序也就无法访问它,则该对象被认为是垃圾。从roots访问的对象集合称为Live集。GC roots标记步骤非常短,因为roots的总数通常比较小。

java11 新特性 详解

该阶段完成后,应用程序恢复执行,ZGC开始下一阶段,该阶段同时遍历对象图并标记所有可访问的对象。 在此阶段期间,读屏障针使用掩码测试所有已加载的引用,该掩码确定它们是否已标记或尚未标记,如果尚未标记引用,则将其添加到队列以进行标记。

在遍历完成之后,有一个最终的,时间很短的的Stop The World阶段,这个阶段处理一些边缘情况(我们现在将它忽略),该阶段完成之后标记阶段就完成了。

重定位

GC循环的下一个主要部分是重定位。重定位涉及移动活动对象以释放部分堆内存。 为什么要移动对象而不是填补空隙? 有些GC实际是这样做的,但是它导致了一个不幸的后果,即分配内存变得更加昂贵,因为当需要分配内存时,内存分配器需要找到可以放置对象的空闲空间。 相比之下,如果可以释放大块内存,那么分配内存就很简单,只需要将指针递增新对象所需的内存大小即可。

ZGC将堆分成许多页面,在此阶段开始时,它同时选择一组需要重定位活动对象的页面。选择重定位集后,会出现一个Stop The World暂停,其中ZGC重定位该集合中root对象,并将他们的引用映射到新位置。与之前的Stop The World步骤一样,此处涉及的暂停时间仅取决于root的数量以及重定位集的大小与对象的总活动集的比率,这通常相当小。所以不像很多收集器那样,暂停时间随堆增加而增加。

移动root后,下一阶段是并发重定位。 在此阶段,GC线程遍历重定位集并重新定位其包含的页中所有对象。 如果应用程序线程试图在GC重新定位对象之前加载它们,那么应用程序线程也可以重定位该对象,这可以通过读屏障(在从堆加载引用时触发)实现,如流程图如下所示:

java11 新特性 详解

这可确保应用程序看到的所有引用都已更新,并且应用程序不可能同时对重定位的对象进行操作。

GC线程最终将对重定位集中的所有对象重定位,然而可能仍有引用指向这些对象的旧位置。 GC可以遍历对象图并重新映射这些引用到新位置,但是这一步代价很高昂。 因此这一步与下一个标记阶段合并在一起。在下一个GC周期的标记阶段遍历对象对象图的时候,如果发现未重映射的引用,则将其重新映射,然后标记为活动状态。

概括

试图单独理解复杂垃圾收集器(如ZGC)的性能特征是很困难的,但从前面的部分可以清楚地看出,我们所碰到的几乎所有暂停都只依赖于GC roots集合大小,而不是实时堆大小。标记阶段中处理标记终止的最后一次暂停是唯一的例外,但是它是增量的,如果超过gc时间预算,那么GC将恢复到并发标记,直到再次尝试。

性能

ZGC到底表现如何?

Stefan KarlssonPer Liden在今年早些时候的Jfokus演讲中给出了一些数字。 ZGCSPECjbb 2015吞吐量与Parallel GC(优化吞吐量)大致相当,但平均暂停时间为1ms,最长为4ms 与之相比G1Parallel有很多次超过200msGC停顿。

然而,垃圾收集器是复杂的软件,从基准测试结果可能无法推测出真实世界的性能。我们期待自己测试ZGC,以了解它的性能如何因工作负载而异。

未来的可能性

着色指针和读屏障提供了一些有趣的可能。

多层堆和压缩

随着闪存和非易失性存储器变得越来越普遍,一种可能是JVM中允许多层堆,可以让很少使用的对象存储在较慢的存储层上。

该功能可以通过扩展指针元数据来实现,指针可以实现计数器位并使用该信息来决定是否需要移动对象到较慢的存储上。如果将来需要访问,则读屏障可以从存储中检索到对象。

或者对象可以以压缩形式保存在内存中,而不是将对象重定位到较慢的存储层。当请求时,可以通过读屏障将其解压并重新分配。

概要

随着拥有数百GB到数TB RAM的服务器变得越来越普及,Java有效使用该规模堆的能力变得越来越重要。

ZGC是个令人兴奋的新垃圾收集器,旨在为大堆提供非常低的暂停时间。 它通过使用着色指针和读屏障来实现这一点,这些是Hotspot新近开发的GC技术,并为未来增加了很多可能性。 ZGCJava 11中作为实验性的功能提供,现在可以使用Early Access 版本试用。

---部分内容摘自网络

 

 

 

 

 

转载于:https://my.oschina.net/mdxlcj/blog/3010342