【算法】一致性哈希算法

1.历史

一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。

2.特点

  • 平衡性(Balance):
    平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。

  • 单调性(Monotonicity):
    单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。

  • 分散性(Spread):
    在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。

  • 负载(Load):
    负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。

3.一致性哈希算法原理

一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间环如下:

【算法】一致性哈希算法

整个空间按顺时针方向组织。0和232-1在零点中方向重合。

下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用ip地址哈希后在环空间的位置如下:

【算法】一致性哈希算法

接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器。

例子

例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:

【算法】一致性哈希算法

根据一致性哈希算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

下面分析一致性哈希算法的容错性和可扩展性。现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:

【算法】一致性哈希算法

此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X 。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。

综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

4.虚拟节点

另外,一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如系统中只有两台服务器,其环分布如下,

【算法】一致性哈希算法

  • 此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。

  • 为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。

  • 具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:

【算法】一致性哈希算法

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。

5.使用场景

  • 假设有100台redis data服务器,一份数据101进来的时候,以散列公式hash(i)&100,计算所存放的服务器,假设hash(i) = i,那么数据被散列到标号为1的服务器,然后这个时候服务器新增了一台,然后散列公式为hash(i)%101,这个时候请求访问数据101的时候,被分配至0号服务器,但是其实这个时候数据是在1号服务器的。

  • 所以这个时候大量的数据失效了(访问不到了)。我们假设是新增了服务器,如果是持久化存储的,我们可以让服务器集群对数据进行重新散列,进行数据迁移,然后进行恢复,但是这个时候就意味着每次增减服务器的时候,集群就需要大量的通信,进行数据迁移,这个开销是非常大的。如果只是缓存,那么缓存就都失效了。

  • 关键问题在于,服务器数量变动的时候,要能够保证旧的数据能够按照老的算法,计算到数据所在的服务器,而新的数据能够按照新的散列算法,计算出数据所在的服务器。

  • 接下来我们就来利用一致性哈希解决这个问题。

6.一致性哈希算法的Redis集群实例

(1)解决方法:一致性哈希

【算法】一致性哈希算法

如上图,我们有ABCD四台服务器,这四台服务器被分配至0~232 的一个环上,比如0~230的存储在A服务器,230 +1~231 存储到B服务器上…..CD按照这样的进行均分。将我们的散列空间也划为0~232 ,然后数据进来后对232 取模,得到一个值K1,我们根据K1在环上所处的位置,得到所分配到的服务器,如图,K1被分配到B服务器。 这个时候,我们有一台服务器B失效了。

【算法】一致性哈希算法

  • 我们可以看到,如果是B失效了,那么如果有持久化存储的,需要做数据恢复,将B的数据迁移至C即可,对于原本散列在A和D的数据,不需要做任何改变。 同理,如果我们是新增了服务器,那么只需要对一台服务器的数据迁移一部分至新加的服务器即可。

  • 一致性hash算法,减少了数据映射关系的变动,不会像hash(i)%N那样带来全局的变动
    而且这样还有个好处,假设我们使用UID作为散列范围(即上面的232 ),那么假设有部分UID的访问很频繁,而且这部分UID集中在B服务器上,那么就造成了B的负载远远高于其他服务器。这就是热点数据的问题。这个时候我们可以向B所在的UID空间添加服务器,减少B的压力。

  • 如果我们是新增了服务器,那么只需要对一台服务器的数据迁移一部分至新加的服务器即可。

(2)优点

  • 一致性hash算法减少了数据映射关系的变动,不会像hash(i)%N那样带来全局的变动

  • 假设我们使用UID作为散列范围(即上面的232 ),那么假设有部分UID的访问很频繁,而且这部分UID集中在B服务器上,那么就造成了B的负载远远高于其他服务器。这就是热点数据的问题。这个时候我们可以向B所在的UID空间添加服务器,减少B的压力。

(3)优化(虚拟节点)

  • 上面说的情况是,使用真实的服务器作为节点散列在232 上。 我们假设,只有4台服务器(如上图),然后A上面有热点数据,结果A挂掉了,然后做数据恢复,A的数据迁移至B,然后B需要承受A+B的数据,也承受不住,也挂了。。。。然后继续CD都挂了。这就造成了雪崩效应。

  • 热点数据造成雪崩效应的原因分析
    如果不存在热点数据的时候,每台机器的承受的压力是M/2(假设每台机器的最高负载能力为M),原本是不会有问题的,但是,这个时候A服务器由于有热点数据挂了,然后A的数据迁移至B,导致B所需要承受的压力变为M(还不考虑热点数据访问的压力),所以这个失败B是必挂的,然后C至少需要承受1.5M的压力。。。。然后大家一起挂。。。

  • 我们通过上面可以看到,之所以会大家一起挂,原因在于如果一台机器挂了,那么它的压力全部被分配到一台机器上,导致雪崩。

  • 如果我们A挂了以后,数据被平均分配到BCD上,每台机器多承受M/6的压力,然后大家就都不会挂啦(不考虑热点数据)。

  • 引入虚拟节点
    如果一台服务器挂了,能够将压力引流至不同的服务器。

小结

一致性hash算法(DHT)通过减少影响范围的方式解决了增减服务器导致的数据散列问题,从而解决了分布式环境下负载均衡问题,如果存在热点数据,那么通过增添节点的方式,对热点区间进行划分,将压力分配至其他服务器。重新达到负载均衡的状态。



本人才疏学浅,若有错,请指出,谢谢!