再次理解信号采样定理(低通抽样定理)

以前对低通信号的采样定理简单理解为:必须要以信号的最高频率的2倍进行采样,否则就恢复不出来原信号,原因是采样频率Fs较小时,信号频谱发生了混叠,所以无法恢复。
仔细想想,这样理解当然正确,可以给出简单推导:
首先对信号采样相当于原信号f(t)f(t)与抽样信号δ\deltaT(t)相乘,而δ\deltaT(t)是周期性的单位冲激信号,傅里叶变换如下式:
再次理解信号采样定理(低通抽样定理)
时域相乘相当于频域卷积,所以采样后的信号的频谱就相当于f(t)f(t)的频谱的周期扩展, 周期就是ω\omega1(也即Fs),那么如果以小于2FH的采样频率采样,则周期扩展后频谱会发生混叠,无法识别原频谱。
再次理解信号采样定理(低通抽样定理)
因为频谱都是周期的,所以在分析时只需要取-Fs/2-Fs/2之间就行了,至于为什么,陈爱军老师给出了一个解释:
1、凭直觉,发生混叠时我们观察到的一般都是接近零频的混淆频率,也就是比较低的频率。例如:以fs=8Hz的采样频率分别对f1=5Hz、f2=13Hz、f3=21Hz的复指数信号进行采样,我们根据采样信号判断,一般都会认为复指数信号的频率是-3Hz=f1-fs=f2-2fs=f3-3fs,而不会认为是5Hz或者其它频率。
2、数模转换时,DAC一般选择最接近零频的混淆频率转换成模拟信号。
参考:http://www.txrjy.com/thread-394879-115-1.html

那么在实际取定采样率的时候,假如突然Fs/2外突然有干扰信号或者噪声怎么办,那么这个信号肯定会被混叠到-Fs/2-Fs/2内造成干扰。
再次理解信号采样定理(低通抽样定理)
信号是如何恢复的呢?上述采样后的信号经过一个低通滤波器就还原了原来的信号,再傅里叶反变换就行了。当然在实际中没有单位冲激脉冲,通过平顶抽样,这相当与在原来周期性单位冲激脉冲的基础上卷积了一个矩形信号,那么频谱就是乘以一个sinc函数,恢复的话先除以一个sinc函数,再经过一个低通滤波器就行了。
通过上面的频谱周期扩展,假如某个信号是10Hz附近,但是我用8Hz采样,虽然不满足奈奎斯特采样定理,但是通过混叠后依然可以把频谱移到低频,这样不也是可以获得吗?答案是正确的,但是这样要求原信号在低频本来是不存在频谱的,这不就是带通信号采样定理吗?