神经网络 ——calssification-tensorflow实现
import tensorflow as tf
#如果电脑上没有所需要的数据包,会从网上下载,下载到当前目录下的MNIST——data文件夹中
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
#如果电脑上有所需要的数据包,则直接加载
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
#定义测试计算准确度函数(mnist数据集分为训练集和测试集,如果将两种集合混合起来去训练可能会出现误差,这里计算准确度的时候使用test数据集,那么这里需要重新定义compute_accuracy的功能。)
def compute_accuracy(v_xs,v_ys):
global prediction #设置全局变量
y_pre = sess.run(prediction,feed_dict={xs:v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
return result
#定义输入到网络的placeholder
xs = tf.placeholder(tf.float32,[None,784]) #28*28
ys = tf.placeholder(tf.float32,[None,10])
#输出预测值
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)
#预测值和真值之间的误差
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
#训练
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#定义sess,启动参数初始化
sess = tf.Session()
sess.run(tf.initialize_all_variables())
#提取部分数据集,并不使用全部数据集
for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(100) #从下载下来的数据集中提取100个数据
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 ==0:
#50步输出一次“测试”计算准确度
print(compute_accuracy(mnist.test.images,mnist.test.labels))
运行结果: