【算法】————6、希尔排序
算法简介
希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。
算法描述和实现
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
- <1>. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- <2>.按增量序列个数k,对序列进行k 趟排序;
- <3>.每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
Javascript代码实现:
function shellSort(arr) {
var len = arr.length,
temp,
gap = 1;
console.time('希尔排序耗时:');
while(gap < len/5) { //动态定义间隔序列
gap =gap*5+1;
}
for (gap; gap > 0; gap = Math.floor(gap/5)) {
for (var i = gap; i < len; i++) {
temp = arr[i];
for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
arr[j+gap] = arr[j];
}
arr[j+gap] = temp;
}
}
console.timeEnd('希尔排序耗时:');
return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(shellSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
希尔排序图示(图片来源网络):
JAVA:
public static void shellSort(int[] arr){
int temp;
for (int delta = arr.length/2; delta>=1; delta/=2){ //对每个增量进行一次排序
for (int i=delta; i<arr.length; i++){
for (int j=i; j>=delta && arr[j]<arr[j-delta]; j-=delta){ //注意每个地方增量和差值都是delta
temp = arr[j-delta];
arr[j-delta] = arr[j];
arr[j] = temp;
}
}//loop i
}//loop delta
}
实现代码2:
public static void shellSort2(int[] arr){
int delta = 1;
while (delta < arr.length/3){//generate delta
delta=delta*3+1; // <O(n^(3/2)) by Knuth,1973>: 1, 4, 13, 40, 121, ...
}
int temp;
for (; delta>=1; delta/=3){
for (int i=delta; i<arr.length; i++){
for (int j=i; j>=delta && arr[j]<arr[j-delta]; j-=delta){
temp = arr[j-delta];
arr[j-delta] = arr[j];
arr[j] = temp;
}
}//loop i
}//loop delta
}
算法稳定性
我们都知道插入排序是稳定算法。但是,Shell排序是一个多次插入的过程。在一次插入中我们能确保不移动相同元素的顺序,但在多次的插入中,相同元素完全有可能在不同的插入轮次被移动,最后稳定性被破坏,因此,Shell排序不是一个稳定的算法。
算法适用场景
Shell排序虽然快,但是毕竟是插入排序,其数量级并没有后起之秀--快速排序O(n㏒n)快。在大量数据面前,Shell排序不是一个好的算法。但是,中小型规模的数据完全可以使用它。
- 最佳情况:T(n) = O(nlog2 n)
- 最坏情况:T(n) = O(nlog2 n)
- 平均情况:T(n) =O(nlog n)