Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

1.个性标签推荐

个性化标签推荐是向用户推荐标签列表以注释(例如描述)项的任务。一个例子是音乐网站,听者(用户)想要标记一首歌(项目),系统推荐他一个关键字列表,听众可以使用这个歌曲。为了推断推荐列表,个性化标签推荐器可以使用系统的历史数据,即过去的标记行为。例如,推荐者可以利用该用户过去给其他(类似)项目的标签,或者类似用户对类似项目所给予的相似标签。

1.1公式化

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

 Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

U为所有用户的集合,I为所有项的集合,T为所有标签的集合。S为U*I*T的集合,并且其中的用户u对项i有进行过t的标签行为。Ps则为用户u对项i有过标签行为的集合。

Recommendation of tags for a given post (u, i) can be formulated as a ranking problem and thus as predicting a total order >u,i⊂ T ×T over tags. That means each ranking >u,i has to satisfy:

∀t1, t2 ∈ T : t1! = t2 ⇒ t1 >u,i t2 ∨ t2 >u,i t1 (1)
∀t1, t2 ∈ T : t1 >u,i t2 ∧ t2 >u,i t1 ⇒ t1 = t2 (2)
∀t1, t2, t3 ∈ T : t1 >u,i t2 ∧ t2 >u,i t3 ⇒ t1 >u,i t3 (3)
where (1) is totality, (2) is antisymmetry and (3) is transitivity.

>u,i为一个集合论中的关系符号,类似于5>4中的‘>’号,t1>u,i t2可以暂且理解为在用户u对于项i的情况下,t1的评分要大于t2。∨是离散中的符号,相当于或;∧相当于并且。条件(1)表示如果t1!=t2,那么t1 >u,i t2 或者t2 >u,i t1,(2)为反对称性,即一个关系中两个不同元素反过来必不相等,例如如果a>=b,那么没有b>=a,除非a=b。

All of the models presented in this paper predict a scoring function ˆY : U × I × T → R which can be used to derive an order that trivially satisfies antisymmetry and transitivity.

Often the number of predicted tags should be restricted.
We therefore also define the list of the Top-N tags as:Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

 

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

Ds集合表示对于元素(u, i, tA, tB),有对于用户u和项i, tA >u,i tB,如图2所示:

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

2贝叶斯个性化排序标签推荐(BPR)

2.1BPR优化准则

The problem of finding the best ranking >u,i⊂ T × T for a given post (u, i) can be formalized as maximizing the following probability: Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解where Θ are the model parameters. Assuming independence of posts, this leads to the maximum a posterior (MAP) estimator of the model parameters:Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

因为p(Θ >u,i)=p(>u,i |Θ) p(Θ)= p(Θ | >u,i) p(>u,i),所以p(>u,i |Θ) p(Θ)/p(>u,i)= p(Θ | >u,i),即p(Θ| >u,i) ∝ p(>u,i |Θ) p(Θ)。

所以想要最大化后验概率p(Θ| >u,i)的问题就转化成了最大化p(>u,i |Θ) p(Θ)。

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

假设独立,拆开来就是这样。

 Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

用逻辑回归函数定义了概率 p(tA >u,i tB|Θ),然后代入。

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

假设Θ ∼ N(0, σ2Θ*I)分布, 那么p(Θ)就为多元分布的概率密度,省略了常数项后就是这样。

结果发现,整个就是一个极大似然。

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

然后算梯度,直接就出来了。 

3.分解模型

3.1Tucker Decomposition (TD) model

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

最普通的分解,梯度为

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

 最明显的缺点为复杂度太高,至少为O(k^3).k := min(ku, ki, kt)

3.2Canonical Decomposition (CD) model

是上一种的变种Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation的理解

这样时间复杂度就降到了O(k)。 

未完待续