Lasso回归算法: 坐标轴下降法与最小角回归法小结
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结。里面对线程回归的正则化也做了一个初步的介绍。提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归。但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展。以下都用矩阵法表示,如果对于矩阵分析不熟悉,推荐学习张贤达的《矩阵分析与应用》。
1. 回顾线性回归
首先我们简要回归下线性回归的一般形式:
需要极小化的损失函数是:
如果用梯度下降法求解,则每一轮
其中
如果用最小二乘法,则
2. 回顾Ridge回归
由于直接套用线性回归可能产生过拟合,我们需要加入正则化项,如果加入的是L2正则化项,就是Ridge回归,有时也翻译为脊回归。它和一般线性回归的区别是在损失函数上增加了一个L2正则化的项,和一个调节线性回归项和正则化项权重的系数
其中
Ridge回归的解法和一般线性回归大同小异。如果采用梯度下降法,则每一轮
其中
如果用最小二乘法,则
其中E为单位矩阵。
模型变量多的缺点呢?有,这就是下面说的Lasso回归。
3. 初识Lasso回归
Lasso回归有时也叫做线性回归的L1正则化,和Ridge回归的主要区别就是在正则化项,Ridge回归用的是L2正则化,而Lasso回归用的是L1正则化。Lasso回归的损失函数表达式如下:
其中n为样本个数,
4. 用坐标轴下降法求解Lasso回归
坐标轴下降法顾名思义,是沿着坐标轴的方向去下降,这和梯度下降不同。梯度下降是沿着梯度的负方向下降。不过梯度下降和坐标轴下降的共性就都是迭代法,通过启发式的方式一步步迭代求解函数的最小值。
坐标轴下降法的数学依据主要是这个结论(此处不做证明):一个可微的凸函数
于是我们的优化目标就是在
下面我们看看具体的算法过程:
1. 首先,我们把
2. 对于第k轮的迭代。我们从
也就是说
如果上面这个式子不好理解,我们具体一点,在第k轮,
...
3. 检查
以上就是坐标轴下降法的求极值过程,可以和梯度下降做一个比较:
5. 用最小角回归法求解Lasso回归
第四节介绍了坐标轴下降法求解Lasso回归的方法,此处再介绍另一种常用方法, 最小角回归法(Least Angle Regression, LARS)。
在介绍最小角回归前,我们先看看两个预备算法,好吧,这个算法真没有那么好讲。
5.1 前向选择(Forward Selection)算法
第一个预备算法是前向选择(Forward Selection)算法。
前向选择算法的原理是是一种典型的贪心算法。要解决的问题是对于:
把 矩阵
5.2 前向梯度(Forward Stagewise)算法
第二个预备算法是前向梯度(Forward Stagewise)算法。
前向梯度算法和前向选择算法有类似的地方,也是在
有没有折中的办法可以综合前向梯度算法和前向选择算法的优点,做一个折中呢?有!这就是终于要出场的最小角回归法。
5.3 最小角回归(Least Angle Regression, LARS)算法
好吧,最小角回归(Least Angle Regression, LARS)算法终于出场了。最小角回归法对前向梯度算法和前向选择算法做了折中,保留了前向梯度算法一定程度的精确性,同时简化了前向梯度算法一步步迭代的过程。具体算法是这样的:
首先,还是找到与因变量
当
最小角回归法是一个适用于高维数据的回归算法,其主要的优点有:
1)特别适合于特征维度n 远高于样本数m的情况。
2)算法的最坏计算复杂度和最小二乘法类似,但是其计算速度几乎和前向选择算法一样
3)可以产生分段线性结果的完整路径,这在模型的交叉验证中极为有用
主要的缺点是:
由于LARS的迭代方向是根据目标的残差而定,所以该算法对样本的噪声极为敏感。
6. 总结
Lasso回归是在ridge回归的基础上发展起来的,如果模型的特征非常多,需要压缩,那么Lasso回归是很好的选择。一般的情况下,普通的线性回归模型就够了。
另外,本文对最小角回归法怎么求具体的
(欢迎转载,转载请注明出处。欢迎沟通交流: [email protected])
from:https://www.cnblogs.com/pinard/p/6018889.html