Self-Training With Progressive Augmentation for Unsupervised Cross-Domain Person Re-Identificatio
Author
Xinyu Zhang Jiewei Cao
Conference
ICCV 2019
Motivation
- 现有的pseudo label estimation高度依赖于聚类结果,所以需要一种渐进的方式来逐步学到可信的伪标签。
Contribution
- 提出一种self-train的渐近式的framwork,总共分成两步conservative stage和promoting stage,在conservative stage用triplet loss来优化网络参数得到相对可信的标签,在promoting stage用cross entropy loss充分利用全局信息。
- 提出一种ranking-based triplet loss,这个loss不依赖聚类产生的伪标签。而是利用特征相似性。
Framework
Algorithm
Framework Overview
- 首先用source domian上带标签的数据来初始化CNN模型M,用模型M提取target domain上图片特征F。
- 在conservative stage用HDBSCAN聚类算法得到相对可信的子类Tu,用CTL(clustering-based triplet loss)和RTL(ranking-based triplet loss)优化网络参数。前者依赖于子类Tu,后者依赖于特征相似性。用优化后的网络提取特征得到Fu。
- 在promoting stage用HDBSCAN聚类算法对新的Fu特征聚类,将cluster的个数是为ID个数,用cross entropy loss计算损失,更新网络参数。
Conservative Stage
主要为两个损失函数CTL和RTL,都很直白。
CTL
CTL将每个cluster视为一类,每次取P个cluster,每个cluster取K张图的特征,然后用hard triplet计算loss,损失函数如下:
RTL
RTL将每张图根据特征相似性(Jaccard 距离)对所有图排序,取为positive sample,取为negative sample(为啥不取的更加远一些-_-)损失函数如下:
和分别为和相对于的ranking位置,值得注意的是这个一个soft margin,和相距越近margin应该越小,符合常理。
Promoting Stage
只用三元组损失函数容易陷入局部最优解,所以依然需要cross entropy loss来充分利用全局信息。损失函数如下:
为的伪标签,这个伪标签由HDBSCAN对Fu(模型经过CTL和RTL优化之后重新对target domain上的图像提取特征)聚类得到,C为cluster的数量。值得注意的是用每一类的特征均值做初始化,因为分类器每一类的参数实际上是这一类的模板,所以这么做可以加快收敛。