论文阅读笔记(一):Learning Dual Convolutional Neural Networks for Low-Level Vision
Learning Dual Convolutional Neural Networks for Low-Level Vision
论文作者:Jinshan Pan1 Sifei Liu2 Deqing Sun2 Jiawei Zhang3 Yang Liu4 Jimmy Ren5
Zechao Li1 Jinhui Tang1 Huchuan Lu4 Yu-Wing Tai6 Ming-Hsuan Yang7
1Nanjing University of Science and Technology 2NVIDIA 3City University of Hong Kong
4Dalian University of Technology 5SenseTime Research 6Tencent Youtu Lab 7UC Merced
论文开源代码:https://sites.google.com/site/jspanhomepage/dualcnn
针对低层视觉问题提出了一个dualCNN结构,这种架构适用于超分辨、边缘保持性滤波、derain、dehazing一系列的任务。
DualCNN由两部分组成:结构恢复部分(Net-S)和细节恢复部分(Net-D)
Net-S架构:
layer | parameters | stride | padding |
1 | 64 conv 9*9 + relu | 1 | 4 |
2 | 32 conv 1*1 + relu | 1 | 0 |
3 | 1 conv 5*5 + relu | 1 | 2 |
Net-D架构:
由20个卷积层组成:64 conv 3*3 + relu
训练过程设置:
batch_size = 64
learning_rate = 0.0001
optimize : SGD
训练数据:使用NYU depth dataset 生成训练图像,图像块设置成:32*32