TensorFlow入门:实现简单的神经网络并用tensorboard可视化
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/14 13:40 # @Author : HJH # @Site : # @File : add_layer.py # @Software: PyCharm import tensorflow as tf import numpy as np def add_layer(inputs,in_size,out_size,nlayer,activation_function=None): layer_name='layer%s'%nlayer with tf.name_scope(layer_name): with tf.name_scope('Weights'): Weights=tf.Variable(tf.random_normal([in_size,out_size]),name="W") tf.summary.histogram(layer_name+'./weights',Weights) with tf.name_scope('biases'): biases=tf.Variable(tf.zeros([1,out_size])+0.1,name="b") tf.summary.histogram(layer_name+'./biases',biases) with tf.name_scope('Wx_plus_b'): Wx_plus_b=tf.matmul(inputs,Weights)+biases if activation_function is None: outputs=Wx_plus_b else: outputs=activation_function(Wx_plus_b) tf.summary.histogram(layer_name + './outputs', outputs) return outputs if __name__=='__main__': X = np.linspace(-1, 1, 300)[:, np.newaxis] noise = np.random.normal(0, 0.05, X.shape) y = np.square(X) - 0.5 + noise with tf.name_scope('inputs'): xs=tf.placeholder(tf.float32,[None,1],name='x_input') ys = tf.placeholder(tf.float32,[None,1],name='y_input') l1=add_layer(xs,1,10,nlayer=1,activation_function=tf.nn.relu) prediction=add_layer(l1,10,1,nlayer=2,activation_function=None) with tf.name_scope('loss'): loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1])) tf.summary.scalar('loss',loss) with tf.name_scope('train'): train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss) init=tf.global_variables_initializer() sess=tf.Session() merged=tf.summary.merge_all() writer=tf.summary.FileWriter("logs/",sess.graph) sess.run(init) for i in range(1000): sess.run(train_step,feed_dict={xs:X,ys:y}) if i%50==0: result=sess.run(merged,feed_dict={xs:X,ys:y}) writer.add_summary(result,i)
运行文件后,产生以下文件:
在dos中进入logs文件所在的文件夹,并输入tensorboard --logdir=logs
复制URL,在浏览器中打开