一、统计学习概论
1.1 统计学习
维基百科:
机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。
Brendan O’Connor的博文Statistics vs. Machine Learning, fight!,初稿是08年写的,或许和作者的机器学习背景有关,他在初稿中主要是贬低了统计学,认为机器学习比统计学多了些Algorithm Modeling方面内容,比如SVM的Max-margin,决策树等,此外他认为机器学习更偏实际。但09年十月的时候他转而放弃自己原来的观点,认为统计才是real deal: Statistics, not machine learning, is the real deal, but unfortunately suffers from bad marketing.
1.统计学习的特点
2.统计学习的对象:
data :计算机及互联网上的各种数字、文字、图像、视频、音频数据以及它们的组合。
数据的基本假设是同类数据具有一定的统计规律性。
3.统计学习的目的
用于对数据(特别是未知数据)进行预测和分析。
4.统计学习的方法
Supervised learning
Unsupervised learning
Semi-supervised learning
Reinforcement learning
5、统计学习方法的步骤
1.2 统计学习分类
1.2.1 监督学习
从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的目标是由人标注的。监督学习就是最常见的分类(注意和聚类区分)问题,通过已有的训练样本(即已知数据及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优表示某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。也就具有了对未知数据分类的能力。监督学习的目标往往是让计算机去学习我们已经创建好的分类系统(模型)。
输入实例X的特征向量:
训练集:
问题的形式化表示:
1.2.2无监督学习
输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类,clustering)试图使类内差距最小化,类间差距最大化。通俗点将就是实际应用中,不少情况下无法预先知道样本的标签,也就是说没有训练样本对应的类别,因而只能从原先没有样本标签的样本集开始学习分类器设计。
非监督学习目标不是告诉计算机怎么做,而是让它(计算机)自己去学习怎样做事情。非监督学习有两种思路。第一种思路是在指导Agent时不为其指定明确分类,而是在成功时,采用某种形式的激励制度。需要注意的是,这类训练通常会置于决策问题的框架里,因为它的目标不是为了产生一个分类系统,而是做出最大回报的决定,这种思路很好的概括了现实世界,agent可以对正确的行为做出激励,而对错误行为做出惩罚。
无监督学习的方法分为两大类:
(1) 一类为基于概率密度函数估计的直接方法:指设法找到各类别在特征空间的分布参数,再进行分类。
(2) 另一类是称为基于样本间相似性度量的简洁聚类方法:其原理是设法定出不同类别的核心或初始内核,然后依据样本与核心之间的相似性度量将样本聚集成不同的类别。
利用聚类结果,可以提取数据集中隐藏信息,对未来数据进行分类和预测。应用于数据挖掘,模式识别,图像处理等。
形式化表示:
1.2.3强化学习
强化学习是智能体(Agent)以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使智能体获得最大的奖赏,强化学习不同于连接主义学习中的监督学习,主要表现在强化信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统RLS(reinforcement learning system)如何去产生正确的动作。由于外部环境提供的信息很少,RLS必须靠自身的经历进行学习。通过这种方式,RLS在行动-评价的环境中获得知识,改进行动方案以适应环境。
强化学习是从动物学习、参数扰动自适应控制等理论发展而来,其基本原理是:
如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强。Agent的目标是在每个离散状态发现最优策略以使期望的折扣奖赏和最大。
强化学习把学习看作试探评价过程,Agent选择一个动作用于环境,环境接受该动作后状态发生变化,同时产生一个强化信号(奖或惩)反馈给Agent,Agent根据强化信号和环境当前状态再选择下一个动作,选择的原则是使受到正强化(奖)的概率增大。选择的动作不仅影响立即强化值,而且影响环境下一时刻的状态及最终的强化值。
强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是Agent对所产生动作的好坏作一种评价(通常为标量信号),而不是告诉Agent如何去产生正确的动作。由于外部环境提供了很少的信息,Agent必须靠自身的经历进行学习。通过这种方式,Agent在行动一一评价的环境中获得知识,改进行动方案以适应环境。
强化学习系统学习的目标是动态地调整参数,以达到强化信号最大。若已知r/A梯度信息,则可直接可以使用监督学习算法。因为强化信号r与Agent产生的动作A没有明确的函数形式描述,所以梯度信息r/A无法得到。因此,在强化学习系统中,需要某种随机单元,使用这种随机单元,Agent在可能动作空间中进行搜索并发现正确的动作。
1.3统计学习方法三要素 模型 策略 算法
1.3.1 模型
在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。刘,假设决策函数是输入变量的线性函数,那么模型的假设空间就是所有这些线性函数构成的函数集合。
决策函数的集合:
参数空间:
条件概率的集合:
参数空间:
1.3.2 策略
损失函数度量一次预测的好坏。
风险函数预测平均意义下模型预测的好坏。
1.3.3 算法
算法是指学习模型的具体计算方法。统计学习基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后考虑用什么样的计算方法求解最优模型。
如果最优化问题有显式的解析式,算法比较简单,但通常解析式不存在,就需要数值计算的方法。
参考资料:
1、《统计学习方法》 李航 清华大学出版社
2、《机器学习实战》 [美] Peter Harrington 人民邮电出版社
3、《统计学习方法》课件 清华大学深圳研究院袁春老师
4、《大数据机器学习》 学堂在线 清华大学深圳研究院袁春老师主讲
5、 黄海广博士github https://github.com/fengdu78
其他参考资料:
https://www.coursera.org/course/ml
http://www.deeplearning.ai