场波知识整理——3.1几种介质中的传播规律

首先是时域和频域之间的Maxwell方程的转换:

时域:

×E=Bt\nabla\times\overline{E}=-\frac{\partial\overline{B}}{\partial{t}}

×H=Dt+J\nabla\times\overline{H}=\frac{\partial\overline{D}}{\partial{t}}+\overline{J}

D=ρ\nabla\cdot\overline{D}=\rho

B=0\nabla\cdot\overline{B}=0

频域:

时域上对t求偏导相当于频域上乘一个(iω-i\omega)

×E(r)=iωB(r)\nabla\times\overline{E}(r)=i\omega\overline{B}(r)

×H(r)=iωD(r)+J(r)\nabla\times\overline{H}(r)=-i\omega\overline{D}(r)+\overline{J}(r)

D(r)=ρ(r)\nabla\cdot\overline{D}(r)=\rho(r)

B(r)=0\nabla\cdot\overline{B}(r)=0

继续写,代入B与H、E与D之间的关系:

D=ϵE,B=μH\overline{D}=\epsilon\overline{E},\overline{B}=\mu\overline{H}

分下面几种情况:

1.无源(J=0\overline{J}=0

××E=iωμ0×H=ω2μ0ϵ0E\nabla\times\nabla\times\overline{E}=i\omega\mu_0\nabla\times\overline{H}=\omega^2\mu_0\epsilon_0\overline{E}

(2+ω2μ0ϵ0)E=0(\nabla^2+\omega^2\mu_0\epsilon_0)\overline{E}=0

E=x^eikzk2=ω2μ0ϵ0\overline{E}=\hat{x}e^{ikz} \quad k^2=\omega^2\mu_0\epsilon_0

2.导体

由欧姆定律,有:J=σE\overline{J}=\sigma\overline{E}

×H=iωϵE+σE=iωϵ(1+iσωϵ)E\nabla\times\overline{H}=-i\omega\epsilon\overline{E}+\sigma\overline{E}=-i\omega\epsilon(1+i\frac{\sigma}{\omega\epsilon})\overline{E}

定义ϵc=ϵ(1+iσωϵ)\epsilon_c=\epsilon(1+i\frac{\sigma}{\omega\epsilon}),则有:

×H=iωϵcE\nabla\times\overline{H}=-i\omega\epsilon_c\overline{E}

k2=ω2μ0ϵck=ωμ0ϵ1+iσωϵ=kR+ikIk^2=\omega^2\mu_0\epsilon_c \quad k=\omega\sqrt{\mu_0\epsilon}\sqrt{1+\frac{i\sigma}{\omega\epsilon}}=k_R+ik_I

频域化时域:

E=Re{Eeiωt}\overline{E}=Re\{\overline{E}\cdot{e^{-i\omega{t}}}\}

=Re{x^ei(kR+ikI)zeiωt}=Re\{\hat{x}e^{i(k_R+ik_I)z}e^{-i\omega{t}}\}

=x^ekIzcos(kRzωt)=\hat{x}e^{-k_Iz}\cos(k_Rz-\omega{t})

我们认为当电场的强度变为原来的1e\frac{1}{e}时,就已经完全衰减,定义此距离为趋肤深度dpd_p(Penetration depth)

因此有e1=ekIdpdp=1kIe^{-1}=e^{k_Id_p} \quad d_p=\frac{1}{k_I}

(1)电导率低的导体(slightly conducting medium)

σωϵ<<1σωϵ0\frac{\sigma}{\omega\epsilon}<<1且\frac{\sigma}{\omega\epsilon}\neq0

k=ωμ0ϵ(1+iσ2ωϵ)kI=σ2μ0ϵk=\omega\sqrt{\mu_0\epsilon}(1+i\frac{\sigma}{2\omega\epsilon}) \quad k_I=\frac{\sigma}{2}\sqrt{\frac{\mu_0}{\epsilon}}

dp=2σϵμ0d_p=\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu_0}}

(2)电导率高的导体(highly conducting medium)

σωϵ>>1\frac{\sigma}{\omega\epsilon}>>1

k=ωμ0ϵiσωϵ=ωμ0σ2(1+i)k=\omega\sqrt{\mu_0\epsilon}\cdot\sqrt{i}\cdot\sqrt{\frac{\sigma}{\omega\epsilon}}=\sqrt{\frac{\omega\mu_0\sigma}{2}}(1+i)

kR=kI=ωμ0σ2k_R=k_I=\sqrt{\frac{\omega\mu_0\sigma}{2}}

dp=2ωμ0σd_p=\sqrt{\frac{2}{\omega\mu_0\sigma}}

3.电浆(Plasma Medium)

f=qE=mdvdt=iωmv\overline{f}=q\overline{E}=m\frac{d\overline{v}}{dt}=-i\omega m\overline{v}

J=Nqv=iNq2ωmE\overline{J}=Nq\overline{v}=i\frac{Nq^2}{\omega m}\overline{E}

ωp=Nq2mϵ0\omega_p=\sqrt{\frac{Nq^2}{m\epsilon_0}}

×H=iωϵ0E+J=iωϵ0(1ωp2ω2)\nabla\times\overline{H}=-i\omega\epsilon_0\overline{E}+\overline{J}=-i\omega\epsilon_0(1-\frac{{\omega_p}^2}{{\omega}^2})

定义ϵp=ϵ0(1ωp2ω2)\epsilon_p=\epsilon_0(1-\frac{{\omega_p}^2}{{\omega}^2}),则有k2=ω2μ0ϵpk^2=\omega^2\mu_0\epsilon_p

(1)ωωpk=ωμ0ϵ01ωp2ω2=kR\omega\geq\omega_p \quad k=\omega\sqrt{\mu_0\epsilon_0}\sqrt{1-\frac{{\omega_p}^2}{{\omega}^2}}=k_R

(2)ωωpk=iωμ0ϵ0ωp2ω21=kI\omega\leq\omega_p \quad k=i\omega\sqrt{\mu_0\epsilon_0}\sqrt{\frac{{\omega_p}^2}{{\omega}^2}-1}=k_I

E=x^eikz=x^ekIz\overline{E}=\hat{x}e^{ikz}=\hat{x}e^{-k_Iz}

H=y^1iωμ0(kI)ekIz\overline{H}=\hat{y}\frac{1}{i\omega\mu_0}(-k_I)e^{-k_Iz}

S=E×H=z^ikIωμ0ekIz\overline{S}=\overline{E}\times\overline{H}^*=\hat{z}i\frac{k_I}{\omega\mu_0}e^{-k_Iz}

<S>=12Re{S}=0<\overline{S}>=\frac{1}{2}Re\{\overline{S}\}=0

这种波我们称为倏逝波

4.洛伦兹介质(Lorentz medium)

qE=f=m(d2rdt2+γdrdt+ω02r),γq\overline{E}=\overline{f}=m(\frac{d^2\overline{r}}{dt^2}+\gamma\frac{d\overline{r}}{dt}+\omega_0^2\overline{r}),\gamma为碰撞频率

与电浆的推导进行对比,可以得出:

J=Nqv=Nq(iω)qEm[(iω)2+(iω)γ+ω02]\overline{J}=Nq\overline{v}=Nq(-i\omega)\frac{q\overline{E}}{m[(-i\omega)^2+(-i\omega)\gamma+\omega_0^2]}

定义ϵL=ϵ(1ωp2ω2ω02+iωγ)\epsilon_L=\epsilon(1-\frac{\omega_p^2}{\omega^2-\omega_0^2+i\omega\gamma})

k2=ω2μϵLk^2=\omega^2\mu\epsilon_L

ϵL=ϵ[1(ω2ω02)ωp2(ω2ω02)2+(ωγ)2]+iωγωp2(ω2ω02)2+(ωγ)2\epsilon_L=\epsilon[1-\frac{(\omega^2-\omega_0^2)\omega_p^2}{{(\omega^2-\omega_0^2)}^2+(\omega\gamma)^2}]+i\frac{\omega\gamma\omega_p^2}{{(\omega^2-\omega_0^2)}^2+(\omega\gamma)^2}

其实部与虚部图像如下:

场波知识整理——3.1几种介质中的传播规律