IO模型

最近学习socket,整理些通信协议设计相关的内容。

前言

    1) 调用者(服务进程):

        阻塞:  进程发起I/O调用,如果调用为完成,进程被挂起休眠,不能再执行其他功能

        非阻塞:进程发起I/O调用,被调用的函数完成之前,依然可以执行其他功能

    2) 被调用函数或过程(系统调用I/O读写操作)

        同步: 函数或功能被进程调用时,不立即返回值,直到此调用完成 

        异步: 函数或功能被进程调用时,不能立即完成则返回未完成状态,完成后通知调用进程

 

主要IO模型:

  1:同步阻塞IO

  2:同步非阻塞IO

     3:异步阻塞IO(IO复用)

     4:异步非阻塞IO(包含了信号驱动IO)

 1)同步阻塞IO

最常用的一个模型是同步阻塞 I/O 模型。在这个模型中,用户空间的应用程序执行一个系统调用,这会导致应用程序阻塞。这意味着应用程序会一直阻塞,直到系统调用完成为止(数据传输完成或发 生错误)。调用应用程序处于一种不再消费 CPU 而只是简单等待响应的状态,因此从处理的角度来看,这是非常有效的。

图 2 给出了传统的阻塞 I/O 模型,这也是目前应用程序中最为常用的一种模型。其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。

图 2. 同步阻塞 I/O 模型的典型流程

IO模型

从应用程序的角度来说,read 调用会延续很长时间。实际上,在内核执行读操作和其他工作时,应用程序的确会被阻塞。

 

2)同步非阻塞 I/O

同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。在这种模型中,设备是以非阻塞的形式打开的。这意味着 I/O 操作不会立即完成,read 操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAINEWOULDBLOCK),如图 3 所示。

图 3. 同步非阻塞 I/O 模型的典型流程

IO模型

非阻塞的实现是 I/O 命令可能并不会立即满足,需要应用程序调用许多次来等待操作完成。这可能效率不高,因为在很多情况下,当内核执行这个命令时,应用程序必须要进行忙碌等 待,直到数据可用为止,或者试图执行其他工作。正如图 3 所示的一样,这个方法可以引入 I/O 操作的延时,因为数据在内核中变为可用到用户调用 read 返回数据之间存在一定的间隔,这会导致整体数据吞吐量的降低。

整个IO请求的过程中,虽然用户线程每次发起IO请求后可以立即返回,但是为了等到数据,仍需要不断地轮询、重复请求,消耗了大量的CPU的资源。一般很少直接使用这种模型,而是在其他IO模型中使用非阻塞IO这一特性。

 

3)异步阻塞 I/O(IO复用)

另外一个阻塞解决方案是带有阻塞通知的非阻塞 I/O。在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有操作。使 select 调用非常有趣的是它可以用来为多个描述符提供通知,而不仅仅为一个描述符提供通知。对于每个提示符来说,我们可以请求这个描述符可以写数据、有读数据可用以及是否发生错误的通知。

图 4. 异步阻塞 I/O 模型的典型流程 (select)

IO模型

select 调用的主要问题是它的效率不是非常高。尽管这是异步通知使用的一种方便模型,但是对于高性能的 I/O 操作来说不建议使用。

 

4)异步非阻塞 I/O(AIO)

最后,异步非阻塞 I/O 模型是一种处理与 I/O 重叠进行的模型。读请求会立即返回,说明 read 请求已经成功发起了。在后台完成读操作时,应用程序然后会执行其他处理操作。当 read 的响应到达时,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。

图 5. 异步非阻塞 I/O 模型的典型流程

IO模型

在 一个进程中为了执行多个 I/O 请求而对计算操作和 I/O 处理进行重叠处理的能力利用了处理速度与 I/O 速度之间的差异。当一个或多个 I/O 请求挂起时,CPU 可以执行其他任务;或者更为常见的是,在发起其他 I/O 的同时对已经完成的 I/O 进行操作。

如果是产生一个信号,有可以称为信号驱动IO

 

 

linux socket举例  : TODO