Netty总结

一、IO模型

  1. 阻塞IO(bloking IO):优点:能够及时返回数据,无延迟;方便调试;缺点:需要付出等待的代价
  2. 非阻塞IO(non-blocking IO):优点:不需要等待任务 ,而是把时间花费到其它任务上,也就是这个当前线程同时处理多个任务;缺点:导致任务完成的响应延迟增大,因为每隔一段时间才去执行询问的动作,但是任务可能在两个询问动作的时间间隔内完成,这会导致整体数据吞吐量的降低
  3. 多路复用IO(multiplexing IO):优点:能够同时处理多个连接,系统开销小,系统不需要创建新的额外进程或者线程,也不需要维护这些进程和线程的运行,降低了系统的维护工作量,节省了系统资源;      缺点:如果处理的连结数目不高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。(因为阻塞可以保证没有延迟,但是多路复用是处理先存在的数据,所以数据的顺序则不管,导致处理一个完整的任务的时间上有延迟)
  4. 信号驱动式IO(signal-driven IO)
  5. 异步IO(asynchronous IO)

    前四种是同步的,最后一种是异步的

二、阻塞和非阻塞,同步和异步

  • 同步与异步:描述的是用户线程与内核的交互方式,同步指用户线程发起IO请求后需要等待或者轮询内核IO操作完成后才能继续执行;而异步是指用户线程发起IO请求后仍然继续执行,当内核IO操作完成后会通知用户线程,或者调用用户线程注册的回调函数。
  • 阻塞与非阻塞:描述是用户线程调用内核IO操作的方式,阻塞是指IO操作需要彻底完成后才返回到用户空间;而非阻塞是指IO操作被调用后立即返回给用户一个状态值,无需等到IO操作彻底完成

以银行取款为例: 

  • 同步 : 自己亲自出马持银行卡到银行取钱(使用同步IO时,Java自己处理IO读写);
  • 异步 : 委托一小弟拿银行卡到银行取钱,然后给你(使用异步IO时,Java将IO读写委托给OS处理,需要将数据缓冲区地址和大小传给OS(银行卡和密码),OS需要支持异步IO操作API);
  • 阻塞 : ATM排队取款,你只能等待(使用阻塞IO时,Java调用会一直阻塞到读写完成才返回);
  • 非阻塞 : 柜台取款,取个号,然后坐在椅子上做其它事,等号广播会通知你办理,没到号你就不能去,你可以不断问大堂经理排到了没有,大堂经理如果说还没到你就不能去(使用非阻塞IO时,如果不能读写Java调用会马上返回,当IO事件分发器会通知可读写时再继续进行读写,不断循环直到读写完成)

三、BIO、NIO、AIO

  • BIO(同步阻塞IO):一个连接一个线程,客户端有连接请求时服务器端就需要启动一个线程进行处理。线程开销大。
  • NIO(同步非阻塞IO):一个请求一个线程,但客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理
  • AIO(异步非阻塞IO,NIO.2):一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理
  • BIO是面向流的,流是单向阻塞的。NIO是面向缓冲区,非阻塞的,NIO的channel是双向的

BIO、NIO、AIO适用场景分析:

  • BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。
  • NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。
  • AIO方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。

四、NIO介绍

    4.1 NIO的特点

      事件驱动模型、单线程处理多任务、非阻塞I/O,基于block的传输比基于流的传输更高效、更高级的IO函数zero-copy、IO多路复用大大提高了Java网络应用的可伸缩性和实用性。基于Reactor线程模型

    4.2 NIO编程

  1. Selector(选择器、多路复用器:Selector会不断的轮询注册在其上的通道(Channel),如果某个通道发生了读写操作,这个通道就处于就绪状态,会被Selector轮询出来,然后通过SelectionKey可以取得就绪的Channel集合,从而进行后续的IO操作。有多种的状态位(SelectionKey.OP_CONNECT,SelectionKey.OP_ACCEPT,SelectionKey.OP_READ,SelectionKey.OP_WRITE)。一个多路复用器(Selector)可以负责成千上万的通道(Channel),没有上限。这也是JDK使用了epoll代替传统的select实现,获得连接句柄(客户端)没有限制。
  2. Channel(管道、通道):通道是双向的,而流只能在一个方向上移动(一个流必须是InputStream或者OutputStream的子类),而通道可以用于读、写或者二者同时进行。通道分为两大类:一类是用于网络读写的SelectableChannel,另一类是用于文件操作的FileChannel,我们使用的SocketChannel和ServerSocketChannel都是SelectableChannel的子类。
  3. Buffer(缓冲区):在NIO类库中,所有的数据都是用缓冲区处理的(读写)。 缓冲区实质上是一个数组,通常它是一个字节数组(ByteBuffer),也可以使用其他类型的数组。这个数组为缓冲区提供了访问数据的读写等操作属性,如位置、容量、上限等概念。Buffer类型:最常使用的是ByteBuffer,实际上每一种java基本类型都对应了一种缓存区(除了Boolean类型)。①ByteBuffer②CharBuffer③ShortBuffer④IntBuffer⑤LongBuffer⑥FloatBuffer⑦DoubleBuffer。    当向 Buffer 写入数据时,Buffer 会记录下写了多少数据。一旦要读取数据,需要通过 flip() 方法将 Buffer 从写模式切换到读模式。在读模式下,可以读取之前写入到 Buffer 的所有数据。一旦读完了所有的数据,就需要清空缓冲区,让它可以再次被写入。有两种方式能清空缓冲区:调用 clear() 或 compact() 方法。clear() 方法会清空整个缓冲区。compact() 方法只会清除已经读过的数据。任何未读的数据都被移到缓冲区的起始处,新写入的数据将放到缓冲区未读数据的后面

    案例详情访问https://blog.csdn.net/qq_33314107/article/details/80353427

五、select、poll和epoll区别

     1、支持一个进程所能打开的最大连接数

           Netty总结

    2、FD(套接字数量)剧增后带来的IO效率问题

           Netty总结

   3、消息传递方式

         Netty总结

综上,表面上看epoll的性能最好,但是在连接数少并且连接都十分活跃的情况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制需要很多函数回调。select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善。

详情访问https://blog.csdn.net/qq_33314107/article/details/81712589

六、Netty和Mina的比较

  1. Netty的文档更清晰,很多Mina的特性在Netty里都有;
  2. Netty更新周期更短,新版本的发布比较快;
  3. 它们的架构差别不大,Mina靠apache生存,而Netty靠jboss,和jboss的结合度非常高,Netty有对google protocal buf的支持,有更完整的ioc容器支持(spring,guice,jbossmc和osgi);
  4. Netty比Mina使用起来更简单,Netty里你可以自定义的处理upstream events或/和downstream events,可以使用decoder和encoder来解码和编码发送内容;
  5. Netty和Mina在处理UDP时有一些不同,Netty将UDP无连接的特性暴露出来;而Mina对UDP进行了高级层次的抽象,可以把UDP当成”面向连接”的协议,而要Netty做到这一点比较困难
  6. Mina将内核和一些特性的联系过于紧密,使得用户在不需要这些特性的时候无法脱离,相比下性能会有所下降,Netty解决了这个设计问题;

七、Netty介绍

  • 一个高性能、异步事件驱动的NIO框架,它提供了对TCP、UDP和文件传输的支持
  • 使用更高效的socket底层,对epoll空轮询引起的cpu占用飙升在内部进行了处理,避免了直接使用NIO的陷阱,简化了NIO的处理方式。
  • 采用多种decoder/encoder 支持,对TCP粘包/分包进行自动化处理
  • 可使用接受/处理线程池,提高连接效率,对重连、心跳检测的简单支持
  • 可配置IO线程数、TCP参数, TCP接收和发送缓冲区使用直接内存代替堆内存,通过内存池的方式循环利用ByteBuf
  • 通过引用计数器及时申请释放不再引用的对象,降低了GC频率
  • 使用单线程串行化的方式,高效的Reactor线程模型
  • 大量使用了volitale、使用了CAS和原子类、线程安全类的使用、读写锁的使用

八、Netty线程模型

  • Netty通过Reactor模型基于多路复用器接收并处理用户请求,内部实现了两个线程池,boss线程池和work线程池,其中boss线程池的线程负责处理请求的accept事件,当接收到accept事件的请求时,把对应的socket封装到一个NioSocketChannel中,并交给work线程池,其中work线程池负责请求的read和write事件,由对应的Handler处理。

  • 单线程模型:所有I/O操作都由一个线程完成,即多路复用、事件分发和处理都是在一个Reactor线程上完成的。既要接收客户端的连接请求,向服务端发起连接,又要发送/读取请求或应答/响应消息。一个NIO 线程同时处理成百上千的链路,性能上无法支撑,速度慢,若线程进入死循环,整个程序不可用,对于高负载、大并发的应用场景不合适。

  • 多线程模型:有一个NIO 线程(Acceptor) 只负责监听服务端,接收客户端的TCP 连接请求;NIO 线程池负责网络IO 的操作,即消息的读取、解码、编码和发送;1 个NIO 线程可以同时处理N 条链路,但是1 个链路只对应1 个NIO 线程,这是为了防止发生并发操作问题。但在并发百万客户端连接或需要安全认证时,一个Acceptor 线程可能会存在性能不足问题。

  • 主从多线程模型:Acceptor 线程用于绑定监听端口,接收客户端连接,将SocketChannel 从主线程池的Reactor 线程的多路复用器上移除,重新注册到Sub 线程池的线程上,用于处理I/O 的读写等操作,从而保证mainReactor只负责接入认证、握手等操作;

   详情访问https://blog.csdn.net/cj2580/article/details/78124780

九、TCP 粘包/拆包

  TCP是以流的方式来处理数据,一个完整的包可能会被TCP拆分成多个包进行发送,也可能把小的封装成一个大的数据包发送

  产生的原因:

  1. 应用程序写入的字节大小大于套接字发送缓冲区的大小,会发生拆包现象,而应用程序写入数据小于套接字缓冲区大小,网卡将应用多次写入的数据发送到网络上,这将会发生粘包现象;
  2. 进行MSS大小的TCP分段,当TCP报文长度-TCP头部长度>最大报文段长度MSS的时候将发生拆包
  3. 以太网帧的payload(净荷)大于最大传输单元MTU(1500字节)进行ip分片

 解决方案:

  1. 消息定长;例如:每个报文的大小固定为200个字节,如果不够,空位补空格;对应Netty中的定长类 :FixedLengthFrameDecoder
  2. 在包尾都增加特殊字符进行分割;例如:加回车、加换行、FTP协议等;对应Netty中的类:1)自定义分隔符类 :DelimiterBasedFrameDecoder   2)行分隔符类:LineBasedFrameDecoder
  3. 将消息分为消息头和消息体;例:在消息头中包含表示消息总长度的字段,然后进行业务逻辑的处理。对应Netty中的基于消息头指定消息长度类:LengthFieldBasedFrameDecoder
  4. 更复杂的应用层协议;解决TCP粘包/分包问题的实例请阅读我的下一篇博文:解决TCP粘包/分包的实例

十、序列化

   10.1 概念

      序列化(编码)将对象序列化为二进制形式(字节数组),主要用于网络传输、数据持久化等;反序列化(解码)是将将从网络、磁盘等读取的字节数组还原成原始对象,主要用于网络传输对象的解码,以便完成远程调用

   10.2  影响序列化性能的关键因素

  1. 序列化后的码流大小(网络带宽的占用);
  2. 序列化的性能(CPU资源占用);
  3. 是否支持跨语言(异构系统的对接和开发语言切换)

   10.3 Serializable序列化问题

  1. 序列化 ID 不同,无法相互序列化和反序列化
  2. 序列化并不保存静态变量
  3. Transient 关键字能阻止该变量被序列化到文件
  4. 子类实现 Serializable 接口,父类不实现,父类的字段数据将不被序列化
  5. 当写入文件的为同一对象时,并不会再将对象的内容进行存储,而只是再次存储一份引用
  6. 在序列化过程中,虚拟机会试图调用对象类里的 writeObject 和 readObject 方法,进行用户自定义的序列化和反序列化,如果没有这样的方法,则默认调用是 ObjectOutputStream 的 defaultWriteObject 方法以及 ObjectInputStream 的 defaultReadObject 方法。用户自定义的 writeObject 和 readObject 方法可以允许用户控制序列化的过程,比如可以在序列化的过程中动态改变序列化的数值。基于这个原理,可以在实际应用中得到使用,用于敏感字段的加密工作

   10.4 方式

  1. Java默认提供的序列化:必须实现Serializable接口。无法跨语言、序列化后的码流太大、序列化的性能差
  2. XML,优点:人机可读性好,可指定元素或特性的名称。缺点:序列化数据只包含数据本身以及类的结构,不包括类型标识和程序集信息;只能序列化公共属性和字段;不能序列化方法;文件庞大,文件格式复杂,传输占带宽。适用场景:当做配置文件存储数据,实时数据转换
  3. JSON:Json序列化一般会使用jackson包,通过ObjectMapper类来进行一些操作,比如将对象转化为byte数组或者将json串转化为对象,优点:兼容性高、数据格式比较简单,易于读写、序列化后数据较小,可扩展性好,兼容性好、与XML相比,其协议比较简单,解析速度比较快。缺点:数据的描述性比XML差、不适合性能要求为ms级别的情况、额外空间开销比较大。适用场景(可替代XML):跨防火墙访问、可调式性要求高、基于Web browser的Ajax请求、传输数据量相对小,实时性要求相对低(例如秒级别)的服务
  4. Fastjson,阿里巴巴开发的一个性能很好的Java 语言实现的 Json解析器和生成器。优点:接口简单易用、目前java语言中最快的json库。缺点:过于注重快,而偏离了“标准”及功能性、代码质量不高,文档不全。适用场景:协议交互、Web输出、Android客户端
  5. Thrift,不仅是序列化协议,还是一个RPC框架。优点:序列化后的体积小, 速度快、支持多种语言和丰富的数据类型、对于数据字段的增删具有较强的兼容性、支持二进制压缩编码。缺点:使用者较少、跨防火墙访问时,不安全、不具有可读性,调试代码时相对困难、不能与其他传输层协议共同使用(例如HTTP)、无法支持向持久层直接读写数据,即不适合做数据持久化序列化协议。适用场景:分布式系统的RPC解决方案
  6. Avro,Hadoop的一个子项目,解决了JSON的冗长和没有IDL的问题。优点:支持丰富的数据类型、简单的动态语言结合功能、具有自我描述属性、提高了数据解析速度、快速可压缩的二进制数据形式、可以实现远程过程调用RPC、支持跨编程语言实现。缺点:对于习惯于静态类型语言的用户不直观。适用场景:在Hadoop中做Hive、Pig和MapReduce的持久化数据格式。
  7. Protobuf,将数据结构以.proto文件进行描述,通过代码生成工具可以生成对应数据结构的POJO对象和Protobuf相关的方法和属性。优点:序列化后码流小,性能高、结构化数据存储格式(XML JSON等)、通过标识字段的顺序,可以实现协议的前向兼容、结构化的文档更容易管理和维护。缺点:需要依赖于工具生成代码、支持的语言相对较少,官方只支持Java 、C++ 、python。适用场景:对性能要求高的RPC调用、具有良好的跨防火墙的访问属性、适合应用层对象的持久化
  8. 其它

  • protostuff 基于protobuf协议,但不需要配置proto文件,直接导包即可
  • Jboss marshaling 可以直接序列化java类, 无须实java.io.Serializable接口
  • Message pack 一个高效的二进制序列化格式
  • Hessian 采用二进制协议的轻量级remoting onhttp工具
  • kryo 基于protobuf协议,只支持java语言,需要注册(Registration),然后序列化(Output),反序列化(Input)

十一、Netty的zero-copy(零拷贝)

  1. Netty的接收和发送ByteBuffer采用Direct Buffer,使用堆外直接内存进行Socket读写,不需要进行字节缓冲区的二次拷贝。堆内存多了一次内存拷贝,JVM会将堆内存Buffer拷贝一份到直接内存中,然后才写入Socket中。ByteBuffer由ChannelConfig分配,而ChannelConfig创建ByteBufAllocator默认使用Direct Buffer
  2. CompositeByteBuf 类可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf, 避免了传统通过内存拷贝的方式将几个小Buffer合并成一个大的Buffer。addComponents方法将 header 与 body 合并为一个逻辑上的 ByteBuf, 这两个 ByteBuf 在CompositeByteBuf 内部都是单独存在的, CompositeByteBuf 只是逻辑上是一个整体
  3. 通过 FileRegion 包装的FileChannel.tranferTo方法 实现文件传输, 可以直接将文件缓冲区的数据发送到目标 Channel,避免了传统通过循环write方式导致的内存拷贝问题。
  4. 通过 wrap方法, 我们可以将 byte[] 数组、ByteBuf、ByteBuffer等包装成一个 Netty ByteBuf 对象, 进而避免了拷贝操作
  5. Selector BUG:若Selector的轮询结果为空,也没有wakeup或新消息处理,则发生空轮询,CPU使用率100%
  6. Netty的解决办法:对Selector的select操作周期进行统计,每完成一次空的select操作进行一次计数,若在某个周期内连续发生N次空轮询,则触发了epoll死循环bug。重建Selector,判断是否是其他线程发起的重建请求,若不是则将原SocketChannel从旧的Selector上去除注册,重新注册到新的Selector上,并将原来的Selector关闭

十二、Netty的高性能表现

  1.  心跳,对服务端:会定时清除闲置会话inactive(netty5),对客户端:用来检测会话是否断开,是否重来,检测网络延迟,其中idleStateHandler类 用来检测会话状态
  2. 串行无锁化设计,即消息的处理尽可能在同一个线程内完成,期间不进行线程切换,这样就避免了多线程竞争和同步锁。表面上看,串行化设计似乎CPU利用率不高,并发程度不够。但是,通过调整NIO线程池的线程参数,可以同时启动多个串行化的线程并行运行,这种局部无锁化的串行线程设计相比一个队列-多个工作线程模型性能更优。
  3. 可靠性,链路有效性检测:链路空闲检测机制,读/写空闲超时机制;内存保护机制:通过内存池重用ByteBuf;ByteBuf的解码保护;优雅停机:不再接收新消息、退出前的预处理操作、资源的释放操作。
  4. Netty安全性:支持的安全协议:SSL V2和V3,TLS,SSL单向认证、双向认证和第三方CA认证。
  5. 高效并发编程的体现:volatile的大量、正确使用;CAS和原子类的广泛使用;线程安全容器的使用;通过读写锁提升并发性能。IO通信性能三原则:传输(AIO)、协议(Http)、线程(主从多线程)
  6. 流量整型的作用(变压器):防止由于上下游网元性能不均衡导致下游网元被压垮,业务流中断;防止由于通信模块接受消息过快,后端业务线程处理不及时导致撑死问题。
  7. TCP参数配置:SO_RCVBUF和SO_SNDBUF:通常建议值为128K或者256K;SO_TCPNODELAY:NAGLE算法通过将缓冲区内的小封包自动相连,组成较大的封包,阻止大量小封包的发送阻塞网络,从而提高网络应用效率。但是对于时延敏感的应用场景需要关闭该优化算法;

十三、Netty案例

    详情访问https://www.cnblogs.com/myJavaEE/p/6793332.html