mysql索引优化实战
分页查询优化(深翻页)
很多时候我们业务系统实现分页功能可能会用如下sql实现
select * from employees limit 10000,10;
表示从表 employees 中取出从 10001 行开始的 10 行记录。看似只查询了 10 条记录,实际这条 SQL 是先读取 10010条记录,然后抛弃前 10000 条记录,然后读到后面 10 条想要的数据。因此要查询一张大表比较靠后的数据,执行效率是非常低的。
1、根据自增且连续的主键排序的分页查询
首先来看一个根据自增且连续主键排序的分页查询的例子:
mysql> select * from employees limit 90000,5;
该 SQL 表示查询从第 90001开始的五行数据,没添加单独 order by,表示通过主键排序。我们再看表 employees ,因为主键是自增并且连续的,所以可以改写成按照主键去查询从第 90001开始的五行数据,如下:
mysql> select * from employees where id > 90000 limit 5;
查询的结果是一致的。我们再对比一下执行计划:
mysql> EXPLAIN select * from employees limit 90000,5;
mysql> EXPLAIN select * from employees where id > 90000 limit 5;
显然改写后的 SQL 走了索引,而且扫描的行数大大减少,执行效率更高。但是,这条 改写的SQL 在很多场景并不实用,因为表中可能某些记录被删后,主键空缺,导致结果不一致,如下图试验所示(先删除一条前面的记录,然后再测试原 SQL 和优化后的 SQL):
两条 SQL 的结果并不一样,因此,如果主键不连续,不能使用上面描述的优化方法。另外如果原 SQL 是 order by 非主键的字段,按照上面说的方法改写会导致两条 SQL 的结果不一致。所以这种改写得满足以下两个条件:
主键自增且连续
结果是按照主键排序的
2、根据非主键字段排序的分页查询
再看一个根据非主键字段排序的分页查询,SQL如下:
SELECT * from t_tms_settlement_logistics ORDER BY CREATE_time desc,logistics_no desc LIMIT 90000,5
explain SELECT * from t_tms_settlement_logistics ORDER BY CREATE_time desc,logistics_no desc LIMIT 90000,5
发现并没有使用 create_time字段的索引(key 字段对应的值为 null),扫描整个索引并查找到没索引的行(可能要遍历多个索引树)的成本比扫描全表的成本更高,所以优化器放弃使用索引。知道不走索引的原因,那么怎么优化呢?
其实关键是让排序时返回的字段尽可能少,所以可以让排序和分页操作先查出主键,然后根据主键查到对应的记录,SQL改写如下:
SELECT
a.*
FROM
t_tms_settlement_logistics a
INNER JOIN (
SELECT
logistics_no
FROM
t_tms_settlement_logistics
ORDER BY
create_time DESC
,logistics_no DESC
LIMIT 90000,
5
) b ON a.logistics_no = b.logistics_no
ORDER BY
a.create_time DESC
,a.logistics_no DESC;
需要的结果与原 SQL 一致,执行时间减少了接近十倍,我们再对比优化前后sql的执行计划:
第一阶段在idx_create_time索引树上扫描全表索引,第二阶段使用临时表和文件排序对主键进行排序、翻页,最后扫描主键索引树拿到所有记录返回
(加上主键排序是因为测试数据是用脚本插入,create_time没有区分度,排序有一定的随机性)
JOIN关联查询优化
mysql的表关联常见有两种算法:
Nested-Loop Join 算法
Block Nested-Loop Join 算法
1、 嵌套循环连接 Nested-Loop Join(NLJ) 算法
一次一行循环地从第一张表(称为驱动表)中读取行,在这行数据中取到关联字段,根据关联字段在另一张表(被驱动表)里取出满足条件的行,然后取出两张表的结果合集。
从执行计划中可以看到这些信息:
驱动表是 t2,被驱动表是 t1。先执行的就是驱动表(执行计划结果的id如果一样则按从上到下顺序执行sql);优化器一般会优先选择小表做驱动表。所以使用 inner join 时,排在前面的表并不一定就是驱动表。
使用了 NLJ算法。一般 join 语句中,如果执行计划 Extra 中未出现 Using join buffer 则表示使用的 join 算法是 NLJ。
上面SQL的大致流程如下:
- 从表 t2 中读取一行数据;
- 从第 1 步的数据中,取出关联字段 a,到表 t1 中查找;
- 取出表 t1 中满足条件的行,跟 t2 中获取到的结果合并,作为结果返回给客户端;
- 重复上面 3 步
整个过程会读取 t2 表的所有数据(扫描100行),然后遍历这每行数据中字段 a 的值,根据 t2 表中 a 的值索引扫描 t1 表中的对应行(扫描100次 t1 表的索引,1次扫描可以认为最终只扫描 t1 表一行完整数据,也就是总共 t1 表也扫描了100行)。因此整个过程扫描了 200 行。如果被驱动表的关联字段没索引,使用NLJ算法性能会比较低(下面有详细解释),mysql会选择Block Nested-Loop Join算法。
2、 基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法
把驱动表的数据读入到 join_buffer 中,然后扫描被驱动表,把被驱动表每一行取出来跟 join_buffer 中的数据做对比。
Extra 中 的Using join buffer (Block Nested Loop)说明该关联查询使用的是 BNL 算法。
上面SQL的大致流程如下:
把 t2 的所有数据放入到 join_buffer 中
把表 t1 中每一行取出来,跟 join_buffer 中的数据做对比
返回满足 join 条件的数据
整个过程对表 t1 和 t2 都做了一次全表扫描,因此扫描的总行数为10000(表 t1 的数据总量) + 100(表 t2 的数据总量) =10100。并且 join_buffer 里的数据是无序的,因此对表 t1 中的每一行,都要做 100 次判断,所以内存中的判断次数是100 * 10000= 100 万次。
如果上面第二条sql使用 Nested-Loop Join,那么扫描行数为 100 * 10000 = 100万次,这个是磁盘扫描。
相比于磁盘扫描,BNL的内存计算会快得多。因此MySQL对于被驱动表的关联字段没索引的关联查询,一般都会使用 BNL 算法。如果有索引一般选择 NLJ 算法,有索引的情况下 NLJ 算法比 BNL算法性能更高
对于关联sql的优化
关联字段加索引,让mysql做join操作时尽量选择NLJ算法
小表驱动大表,写多表连接sql时如果明确知道哪张表是小表可以用straight_join写法固定连接驱动方式,省去mysql优化器自己判断的时间
straight_join解释:straight_join功能同join类似,但能让左边的表来驱动右边的表,能改表优化器对于联表查询的执行顺序。比如:select * from t2 straight_join t1 on t2.a = t1.a; 代表制定mysql选着 t2 表作为驱动表。straight_join只适用于inner join,并不适用于left join,right join。(因为left join,right join已经代表指定了表的执行顺序)尽可能让优化器去判断,因为大部分情况下mysql优化器是比人要聪明的。使用straight_join一定要慎重,因为部分情况下人为指定的执行顺序并不一定会比优化引擎要靠谱。
in和exists优化
原则:小表驱动大表,即小的数据集驱动大的数据集
Count()查询优化
mysql> EXPLAIN select count(1) from employees;
mysql> EXPLAIN select count(id) from employees;
mysql> EXPLAIN select count(name) from employees;
mysql> EXPLAIN select count() from employees;
四个sql的执行计划一样,说明这四个sql执行效率应该差不多,区别在于根据某个字段count不会统计字段为null值的数据行
为什么mysql最终选择辅助索引而不是主键聚集索引?因为二级索引相对主键索引存储数据更少,检索性能应该更高
常见优化方法:
1、查询mysql自己维护的总行数
对于myisam存储引擎的表做不带where条件的count查询性能是很高的,因为myisam存储引擎的表的总行数会被mysql存储在磁盘上,查询不需要计算
对于innodb存储引擎的表mysql不会存储表的总记录行数,查询count需要实时计算
2、show table status
如果只需要知道表总行数的估计值可以用如下sql查询,性能很高
3.将总数维护到redis里
插入或删除表数据行的时候同时维护redis里的表总行数key的计数值(用incr或decr命令),但是这种方式可能不准,很难保证表操作和redis操作的事务一致性
4、增加计数表
插入或删除表数据行的时候同时维护计数表,让他们在同一个事务里操作