G1垃圾回收过程

G1回收过程一: 年轻代GC

JVM启动时,G1先准备好Eden区,程序在运行过程中不断创建对象到Eden区,当Eden空间耗尽时,G1会启动一次年轻代垃圾回收过程。
年轻代垃圾回收只会回收Eden区和Survivor区。
YGC时,首先G1停止应用程序的执行(Stop-The-World),G1创建回收集(Collection Set),回收集是指需要被回收的内存分段的集合,年轻代回收过程的回收集包含年轻代Eden区和Survivor区所有的内存分段。

然后开始如下回收过程:
第一阶段,扫描根。
根是指static变量指向的对象,正在执行的方法调用链条上的局部变量等。跟引用连同RSet记录的外部引用作为扫描存活对象的入口。
第二阶段,更新RSet。
处理dirty card queue(见备注)中的card,更新RSet。此阶段完成后,RSet可以准确的反映老年代对所在的内存分段中对象的引用。

备注:
对于应用程序的引用赋值语句object.field=object,JVM会在之前和之后执行特殊的操作以在dirty card queue中入队一个保存了对象引用信息的card。在年轻代回收的时候,G1会对Dirty Card Queue中所有的card进行处理,以更新RSet,保证RSet实时准确的反映引用关系。
那为什么不在引用赋值语句处直接更新RSet呢?这是为了性能的需要,RSet的处理需要线程同步,开销会很大,使用队列性能会好很多。

第三阶段,处理RSet。
识别被老年代对象指向的Eden中的对象,这些被指向的Eden中的对象被认为是存活的对象。
第四阶段,复制对象。
此阶段,对象树被遍历,Eden区内存段中存活的对象会被复制到Survivor区中空的内存分段,Survivor区内存段中存活的对象如果年龄未达阈值,年龄会加1,达到阈值会被复制到Old区中空的内存分段。如果Survivor空间不够,Eden空间的部分数据会直接晋升到老年代空间。
第五阶段,处理引用。
处理Soft,Weak,Phantom,Final,JNI Weak 等引用。最终Eden空间的数据为空,GC停止工作,而目标内存中的对象都是连续存储的,没有碎片,所以复制过程可以达到内存整理的效果,减少碎片。

G1回收过程二: 并发标记过程

G1垃圾回收过程

1. 初始标记阶段: 标记从根节点直接可达的对象。这个阶段是STW的,并且会触发一次年轻代GC。
2. 根区域扫描(Root Region Scanning): G1 GC扫描survivor区直接可达的老年代区域对象,并标记被引用的对象。这一过程必须在young GC之前完成。
3. 并发标记(Concurrent Marking): 在整个堆中进行并发标记(和应用程序并发执行),此过程可能被young GC中断。在并发标记阶段,若发现区域对象中的所有对象都是垃圾,那这个区域会被立即回收。同时,并发标记过程中,会计算每个区域的对象活性(区域中存活对象的比例)。
4. 再次标记(Remark): 由于应用程序持续进行,需要修正上一次的标记结果。是STW的。G1中采用了比CMS更快的初始快照法: snapshot-at-the-beginning(SATB)。
5. 独占清理(cleanup,STW): 计算各个区域的存活对象和GC回收比例,并进行排序,识别可以混合回收的区域。为下阶段做铺垫。是STW的。
6. 并发清理阶段: 识别并清理完全空闲的区域。

G1回收过程三: 混合回收

当越来越多的对象晋升到老年代old region时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即Mixed GC,该算法并不是一个Old GC,除了回收整个Young Region,还会回收一部分的Old Region。这里需要注意: 是一部分老年代,而不是全部老年代。可以选择哪些Old Region进行收集,从而可以对垃圾回收的耗时时间进行控制。也要注意的是Mixed GC并不是Full GC。

G1垃圾回收过程

 

  • 并发标记结束以后,老年代中百分百为垃圾的内存分段被回收了,部分为垃圾的内存分段被计算了出来。默认情况下,这些老年代的内存分段会分8次(可以通过-XX:G1MixedGCCountTarget设置)被回收。
  • 混合回收的回收集(Collection Set)包括八分之一的老年代内存分段,Eden区内存分段,Survivor区内存分段。混合回收的算法和年轻代回收的算法完全一样,只是回收集多了老年代的内存分段。具体过程请参考上面的年轻代回收过程。
  • 由于老年代中的内存分段默认分8次回收,G1会优先回收垃圾多的内存分段。垃圾占内存分段比例越高,越会被先回收。并且有一个阈值会决定内存分段是否被回收。-XX:G1MixedGCLiveThresholdPercent,默认为65%,意思是垃圾占内存分段比例要达到65%才会被回收。如果垃圾占比太低,意味着存活的对象占比高,在复制的时候会花费更多的时间。
  • 混合回收并不一定要进行8次。有一个阈值-XX:G1HeapWastePercent,默认值为10%,意思是允许整个堆内存中有10%的空间被浪费,意味着如果发现可以回收的垃圾占堆内存的比例低于10%,则不再进行混合回收。因为GC会花费很多的时间但是回收到的内存却很少。

G1回收可选的过程四: Full GC

G1的初衷就是要避免Full GC的出现。按时如果上述方式不能正常工作,G1会停止应用程序的执行(Stop-The-World),使用单线程的内存回收算法进行垃圾回收,性能会非常差,应用程序停顿时间会很长。

要避免Full GC的发生,一旦发生需要进行调整。什么时候会发生Full GC呢?比如堆内存太小,当G1在复制存活对象的时候没有空的内存分段可用,则会回退到full gc,这种情况可以通过增大内存解决。

导致G1Full GC的原因可能有两个:

  1. Evacuation的时候没有足够的to-space来存放晋升的对象;
  2. 并发处理过程完成之前空间耗尽。

【总结】

  1. Mixed GC是一个很长的过程,从initial-mark开始,直到G1Ergonomics (Mixed GCs) do not continue mixed GCs。这期间,可以发生多次GC(本例中开始和结束中间只有一次,因为启动Mixed GC时,可回收内存仅占6%,且中途并没有产生大量的H-OBJ,所以一次回收后,就小于5%的门限。)。
  2. initial-mark开始的每一次GC,都会回收老年代的内存。
  3. 在Mixed GC运行期间,如果有H-OBJ的申请,将不会再次触发concurrent cycle initiation
  4. 触发内存回收,只有2种情况:
    • Eden耗尽
    • 堆内存耗尽
  5. 如果由于堆内存耗尽而触发GC,会导致长时间停顿。