抽象代数练习(I)

Hw1:证明 “-” 在R,Q,Z\mathbb{R},\mathbb{Q},\mathbb{Z}上不是交换或结合的二元运算。

证明:
{φ(a,b)=baφ(b,a)=ab\left\{ \begin{aligned} & \varphi \left( a,b \right)=b-a \\ & \varphi \left( b,a \right)=a-b \\ \end{aligned} \right.
φ(a,b)φ(b,a)=2(ab)0\Rightarrow \varphi \left( a,b \right)-\varphi \left( b,a \right)=2\left( a-b \right)\cancel{\equiv }0,
thus ‘-’ is not commutative on R,Q,Z\mathbb{R},\mathbb{Q},\mathbb{Z}.
{φ(φ(a,b),c)=(ab)c=abcφ(a,φ(b,c))=a(bc)=ab+c\left\{ \begin{aligned} & \varphi \left( \varphi \left( a,b \right),c \right)=\left( a-b \right)-c=a-b-c \\ & \varphi \left( a,\varphi \left( b,c \right) \right)=a-\left( b-c \right)=a-b+c \\ \end{aligned} \right.
φ(φ(a,b),c)φ(a,φ(b,c))=2c0,\Rightarrow \varphi \left( \varphi \left( a,b \right),c \right)-\varphi \left( a,\varphi \left( b,c \right) \right)=-2c\cancel{\equiv }0,
thus ‘-’ is not associative on R,Q,Z\mathbb{R},\mathbb{Q},\mathbb{Z}.

Hw2:\ReAA上的一个等价关系,令{Kα}α{{\left\{ {{K}_{\alpha }} \right\}}_{\alpha }}\Re所给出的等价类构成的集合,证明{Kα}α{{\left\{ {{K}_{\alpha }} \right\}}_{\alpha }}AA的一个分划。

证明:

  1. To prove Ki{Kα}αA\forall {{K}_{i}}\in {{\left\{ {{K}_{\alpha }} \right\}}_{\alpha \in A}}, Ki{{K}_{i}}\ne \varnothing.
    Ki{Kα}\forall {{K}_{i}}\in \left\{ {{K}_{\alpha }} \right\}, we see the definition of Ki{{K}_{i}} is
    Ki:={xAxi}.{{K}_{i}}:=\left\{ \left. x\in A \right|x\Re i \right\}.
    Because \Re is self-reflexive, we have
    ii  iKi  Ki.i\Re i\text{ }\Rightarrow \text{ }i\in {{K}_{i}}\text{ }\Rightarrow \text{ }{{K}_{i}}\ne \varnothing.
  2. To prove that Ki,Kj{Kα}, ij, KiKj=.\forall {{K}_{i}},{{K}_{j}}\in \left\{ {{K}_{\alpha }} \right\},\text{ }i\ne j,\text{ }{{K}_{i}}\bigcap {{K}_{j}}=\varnothing .
    Directly we have
    iKi  jKj.i\in {{K}_{i}}\text{ }\wedge \text{ }j\in {{K}_{j}}.
    And because KiKj{{K}_{i}}\ne {{K}_{j}}, we have
    iKj  jKi.i\notin {{K}_{j}}\text{ }\wedge \text{ }j\notin {{K}_{i}}.
    Thus firstly we have
    i,j(KiKj).i,j\notin \left( {{K}_{i}}\bigcap {{K}_{j}} \right).
    Then consider kA\{i,j}\forall k\in A\backslash \left\{ i,j \right\}, all the possibilities are below.
      2.1:
    (kKikKj)  (kKikKj)  (kKikKj)\left( k\notin {{K}_{i}}\wedge k\notin {{K}_{j}} \right)\text{ }\vee \text{ }\left( k\in {{K}_{i}}\wedge k\notin {{K}_{j}} \right)\text{ }\vee \text{ }\left( k\notin {{K}_{i}}\wedge k\in {{K}_{j}} \right)
     k(KiKj)\Rightarrow \text{ }k\notin \left( {{K}_{i}}\bigcap {{K}_{j}} \right)
      2.2:
    kKikKj k\in {{K}_{i}}\wedge k\in {{K}_{j}}\text{ }
     kRi  kRj  iRkkRj iRj iKj\begin{aligned} & \Rightarrow \text{ }kRi\text{ }\wedge \text{ }kRj\text{ } \\ & \Rightarrow \text{ }iRk\wedge kRj \\ & \Rightarrow \text{ }iRj \\ & \Rightarrow \text{ }i\in {{K}_{j}} \\ \end{aligned}
    which is contradictious with iKji\notin {{K}_{j}}.
    Thus kA\{i,j}\forall k\in A\backslash \left\{ i,j \right\}, k(KiKj)k\notin \left( {{K}_{i}}\bigcap {{K}_{j}} \right).
    {KiKjAi,j(KiKj)k(KiKj), kA\{i,j}  KiKj=\left\{ \begin{aligned} & {{K}_{i}}\bigcap {{K}_{j}}\subset A \\ & i,j\notin \left( {{K}_{i}}\bigcap {{K}_{j}} \right) \\ & k\notin \left( {{K}_{i}}\bigcap {{K}_{j}} \right),\text{ }\forall k\in A\backslash \left\{ i,j \right\} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{{K}_{i}}\bigcap {{K}_{j}}=\varnothing.
  3. To prove that A=αKαA=\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}. The proposition is equal to
    AαKα  αKαA.A\subset \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}\text{ }\wedge \text{ }\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}\subset A.
      3.1 To prove that αKαA.\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}\subset A.
    ti(tKi  tA) Ki{Kα}, KiAKαA\begin{aligned} & \forall t\forall i\left( t\in {{K}_{i}}\text{ }\to \text{ }t\in A \right) \\ & \Rightarrow \text{ }\forall {{K}_{i}}\in \left\{ {{K}_{\alpha }} \right\},\text{ }{{K}_{i}}\subset A \\ & \Rightarrow {\mathop{\bigcup }}\,{{K}_{\alpha }}\subset A \\ \end{aligned}.
      3.2 To prove that AαKα.A\subset \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}.
      Due to αKαA\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}\subset A proved in 3.1, we divide AA into AαKαA-\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }} & αKα\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}, and we have
    A=(AαKα)(αKα).A=\left( A-\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }} \right)\bigcup \left( \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }} \right).
      Consider kA\forall k\in A, there are two possibilities:
        3.2.1 Ki{Kα}, kKi\exists {{K}_{i}}\in \left\{ {{K}_{\alpha }} \right\},\text{ }k\in {{K}_{i}}, then obviously we have
    kαKαA.k\in \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}\subset A.
        3.2.2 Ki{Kα}, kKi\forall {{K}_{i}}\in \left\{ {{K}_{\alpha }} \right\},\text{ }k\notin {{K}_{i}}, then we have
    kαKα  k(AαKα)k\notin \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}\text{ }\Rightarrow \text{ }k\in \left( A-\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }} \right)
        So we can let Kk:={x(A\αKα)xk}{{K}_{k}}:=\left\{ \left. x\in \left( A\backslash \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }} \right) \right|x\Re k \right\}, then we have
    kKk  kαKα,k\in {{K}_{k}}\text{ }\Rightarrow \text{ }k\in \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }},
        which is contradictious with kαKαk\notin \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}.
        Thus we prove that AαKαA\subset \underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}.
      Thus we prove that A=αKαA=\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }}.
    In conclusion, we have proved
    {Ki, Ki{Kα}αAKiKj=, Ki,Kj{Kα}, ijA=αKα\left\{ \begin{aligned} & {{K}_{i}}\ne \varnothing ,\text{ }\forall {{K}_{i}}\in {{\left\{ {{K}_{\alpha }} \right\}}_{\alpha \in A}} \\ & {{K}_{i}}\bigcap {{K}_{j}}=\varnothing ,\text{ }\forall {{K}_{i}},{{K}_{j}}\in \left\{ {{K}_{\alpha }} \right\},\text{ }i\ne j \\ & A=\underset{\alpha }{\mathop{\bigcup }}\,{{K}_{\alpha }} \\ \end{aligned} \right.
    thus {Kα}αA{{\left\{ {{K}_{\alpha }} \right\}}_{\alpha \in A}} is a partition of AA.

Hw3:画出S3S_3的群表。

On {1,2,3}\left\{ 1,2,3 \right\} define permutation fijk:={1i2j3k, ijk{{f}_{ijk}}:=\left\{ \begin{aligned} & 1\to i \\ & 2\to j \\ & 3\to k \\ \end{aligned} \right.,\text{ }i\ne j\ne k.
Then we have the group table of S3{{S}_{3}}:
f123f132f213f231f312f321f123f123f132f213f231f312f321f132f132f123f231f213f321f312f213f213f312f123f321f132f231f231f231f321f132f312f123f213f312f312f213f321f123f231f132f321f321f231f312f132f213f123\begin{matrix} {} & {{f}_{123}} & {{f}_{132}} & {{f}_{213}} & {{f}_{231}} & {{f}_{312}} & {{f}_{321}} \\ {{f}_{123}} & {{f}_{123}} & {{f}_{132}} & {{f}_{213}} & {{f}_{231}} & {{f}_{312}} & {{f}_{321}} \\ {{f}_{132}} & {{f}_{132}} & {{f}_{123}} & {{f}_{231}} & {{f}_{213}} & {{f}_{321}} & {{f}_{312}} \\ {{f}_{213}} & {{f}_{213}} & {{f}_{312}} & {{f}_{123}} & {{f}_{321}} & {{f}_{132}} & {{f}_{231}} \\ {{f}_{231}} & {{f}_{231}} & {{f}_{321}} & {{f}_{132}} & {{f}_{312}} & {{f}_{123}} & {{f}_{213}} \\ {{f}_{312}} & {{f}_{312}} & {{f}_{213}} & {{f}_{321}} & {{f}_{123}} & {{f}_{231}} & {{f}_{132}} \\ {{f}_{321}} & {{f}_{321}} & {{f}_{231}} & {{f}_{312}} & {{f}_{132}} & {{f}_{213}} & {{f}_{123}} \\ \end{matrix}

Hw4:GG是一个群,证明若H1,H2<G{{H}_{1}},{{H}_{2}}<G,则H1H2<G{{H}_{1}}\bigcap {{H}_{2}}<G.

证明:

  1. H1, H2<G  H1,H2G  H1H2G{{H}_{1}},\text{ }{{H}_{2}}<G\text{ }\Rightarrow \text{ }{{H}_{1}},{{H}_{2}}\subseteq G\text{ }\Rightarrow \text{ }{{H}_{1}}\bigcap {{H}_{2}}\subseteq G
  2. Hi<G  ai,biHi, aibiHi, i=1,2{{H}_{i}}<G\text{ }\Rightarrow \text{ }\forall {{a}_{i}},{{b}_{i}}\in {{H}_{i}},\text{ }{{a}_{i}}{{b}_{i}}\in {{H}_{i}},\text{ }i=1,2,
    thus a,b(H1H2)\forall a,b\in \left( {{H}_{1}}\bigcap {{H}_{2}} \right) we have
    a,bH1  a,bH2  abH1  abH2  ab(H1H2)a,b\in {{H}_{1}}\text{ }\wedge \text{ }a,b\in {{H}_{2}}\text{ }\Rightarrow \text{ }ab\in {{H}_{1}}\text{ }\wedge \text{ }ab\in {{H}_{2}}\text{ }\Rightarrow \text{ }ab\in \left( {{H}_{1}}\bigcap {{H}_{2}} \right)
  3. H1,H2<G  eH1 eH2  e(H1H2){{H}_{1}},{{H}_{2}}<G\text{ }\Rightarrow \text{ }e\in {{H}_{1}}\wedge \text{ }e\in {{H}_{2}}\text{ }\Rightarrow \text{ }e\in \left( {{H}_{1}}\bigcap {{H}_{2}} \right)
  4. H1<G  a1,b1,c1H1, (a1b1)c1=a1(b1c1),{{H}_{1}}<G\text{ }\Rightarrow \text{ }\forall {{a}_{1}},{{b}_{1}},{{c}_{1}}\in {{H}_{1}},\text{ }\left( {{a}_{1}}{{b}_{1}} \right){{c}_{1}}={{a}_{1}}\left( {{b}_{1}}{{c}_{1}} \right),
    thus a,b,c(H1H2)\forall a,b,c\in \left( {{H}_{1}}\bigcap {{H}_{2}} \right) we have
    a,b,cH1  (ab)c=a(bc)a,b,c\in {{H}_{1}}\text{ }\Rightarrow \text{ }\left( ab \right)c=a\left( bc \right)
  5. a(H1H2)\forall a\in \left( {{H}_{1}}\bigcap {{H}_{2}} \right), we have
    aH1 aH2 aG.a\in {{H}_{1}}\text{ }\wedge a\in {{H}_{2}}\text{ }\wedge a\in G.
    GG is a group and Hi<G(i=1,2){{H}_{i}}<G\left( i=1,2 \right), we have
    a(H1H2), !(a1)0G, (a1)1H1G, (a1)2H2G ,s.t.\forall a\in \left( {{H}_{1}}\cap {{H}_{2}} \right),\text{ }\exists !{{\left( {{a}^{-1}} \right)}_{0}}\in G,\text{ }{{\left( {{a}^{-1}} \right)}_{1}}\in {{H}_{1}}\subseteq G,\text{ }{{\left( {{a}^{-1}} \right)}_{2}}\in {{H}_{2}}\subseteq G\text{ },s.t.
    a(a1)0=a(a1)1=a(a1)2=e,a{{\left( {{a}^{-1}} \right)}_{0}}=a{{\left( {{a}^{-1}} \right)}_{1}}=a{{\left( {{a}^{-1}} \right)}_{2}}=e,
    and we have
    (a1)0=(a1)1  (a1)0=(a1)2{{\left( {{a}^{-1}} \right)}_{0}}={{\left( {{a}^{-1}} \right)}_{1}}\text{ }\wedge \text{ }{{\left( {{a}^{-1}} \right)}_{0}}={{\left( {{a}^{-1}} \right)}_{2}}
    (a1)0=(a1)1=(a1)2,\Rightarrow {{\left( {{a}^{-1}} \right)}_{0}}={{\left( {{a}^{-1}} \right)}_{1}}={{\left( {{a}^{-1}} \right)}_{2}},
    thus !a1=(a1)1=(a1)2(H1H2), s.t.\exists !{{a}^{-1}}={{\left( {{a}^{-1}} \right)}_{1}}={{\left( {{a}^{-1}} \right)}_{2}}\in \left( {{H}_{1}}\cap {{H}_{2}} \right),\text{ }s.t. aa1=e.a{{a}^{-1}}=e.

By proving 1) to 5), we have proved the proposition.

Hw5:证明阿贝尔群的子群都是正规子群。

证明:
Let GG be any abelian group, SS be any subgroup of GG.
GG is an abelian group
a1,a2G, a1a2=a2a1\Rightarrow \forall {{a}_{1}},{{a}_{2}}\in G,\text{ }{{a}_{1}}{{a}_{2}}={{a}_{2}}{{a}_{1}}
aG, S<G, aS=Sa\Rightarrow \forall a\in G,\text{ }S<G,\text{ }aS=Sa.
S<GS<G
tS, t1S, s.t. tt1=e\Rightarrow \forall t\in S,\text{ }\exists {{t}^{-1}}\in S,\text{ }s.t.\text{ }t\centerdot {{t}^{-1}}=e.
For any t,t1SGt,{{t}^{-1}}\in S\subseteq G, we have
tSt1=tt1S=S,t\centerdot S\centerdot {{t}^{-1}}=t\centerdot {{t}^{-1}}\centerdot S=S,
thus SS is a normal subgroup of AA.

Hw6:证明GG是一个群,则GG一定不是两个真子群的并集。

证明:
Assume that group G=G1G2G={{G}_{1}}\bigcup {{G}_{2}}, G1,G2{{G}_{1}},{{G}_{2}} satisfy conditions:
1)G1,G2G;  2)G1,G2<G;  3)G1G2.1){{G}_{1}},{{G}_{2}}\subset G;\ \ 2){{G}_{1}},{{G}_{2}}<G;\ \ 3){{G}_{1}}\ne {{G}_{2}}.
Let ee be the identity element of GG, then obviously we have:
eG1G2G3.e\in {{G}_{1}}\bigcap {{G}_{2}}\bigcap {{G}_{3}}.
G=G1G2  G1G2G={{G}_{1}}\bigcup {{G}_{2}}\text{ }\wedge \text{ }{{G}_{1}}\ne {{G}_{2}}
g1,g2G, s.t. {g1G1  g1G2g2G1  g2G2.\Rightarrow \exists {{g}_{1}},{{g}_{2}}\in G,\text{ }s.t.\text{ }\left\{ \begin{aligned} & {{g}_{1}}\in {{G}_{1}}\text{ }\wedge \text{ }{{g}_{1}}\notin {{G}_{2}} \\ & {{g}_{2}}\notin {{G}_{1}}\text{ }\wedge \text{ }{{g}_{2}}\in {{G}_{2}} \\ \end{aligned} \right..
Consider all GsG's cosets on G2{{G}_{2}}:G/G2:={tG2tG}G/{{G}_{2}}:=\left\{ \left. t{{G}_{2}} \right|\forall t\in G \right\}.
t1G1, t2G2\forall {{t}_{1}}\in {{G}_{1}},\text{ }{{t}_{2}}\in {{G}_{2}}, we have:
1){g1G2t2G2  t2G2G2  g1t2G2;\left\{ \begin{aligned} & {{g}_{1}}\notin {{G}_{2}} \\ & {{t}_{2}}\in {{G}_{2}}\text{ }\Rightarrow \text{ }{{t}_{2}}{{G}_{2}}\subset {{G}_{2}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{{g}_{1}}\notin {{t}_{2}}{{G}_{2}};
2){g1g1G2  g1t2G2t1G2=t2G2 or t1G2t2G2=  g1G2t2G2=;\left\{ \begin{aligned} & {{g}_{1}}\in {{g}_{1}}{{G}_{2}}\text{ }\wedge \text{ }{{g}_{1}}\notin {{t}_{2}}{{G}_{2}} \\ & {{t}_{1}}{{G}_{2}}={{t}_{2}}{{G}_{2}}\text{ }or\text{ }{{t}_{1}}{{G}_{2}}\bigcap {{t}_{2}}{{G}_{2}}=\varnothing \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{{g}_{1}}{{G}_{2}}\bigcap {{t}_{2}}{{G}_{2}}=\varnothing ;
3){t2t2G2  G2t2G2t2G2t2G2G2  t2G2t2G2G2  G2=t2G2t2G2;\left\{ \begin{aligned} & {{t}_{2}}\in {{t}_{2}}{{G}_{2}}\text{ }\Rightarrow \text{ }{{G}_{2}}\subset \underset{{{t}_{2}}\in {{G}_{2}}}{\mathop{\bigcup }}\,{{t}_{2}}{{G}_{2}} \\ & {{t}_{2}}{{G}_{2}}\subset {{G}_{2}}\text{ }\Rightarrow \text{ }\underset{{{t}_{2}}\in {{G}_{2}}}{\mathop{\bigcup }}\,{{t}_{2}}{{G}_{2}}\subset {{G}_{2}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{{G}_{2}}=\underset{{{t}_{2}}\in {{G}_{2}}}{\mathop{\bigcup }}\,{{t}_{2}}{{G}_{2}};
4){g1G2t2G2=G2=t2G2t2G2g1G2G  g1G2GG2G1.\left\{ \begin{aligned} & {{g}_{1}}{{G}_{2}}\bigcap {{t}_{2}}{{G}_{2}}=\varnothing \\ & \\ & {{G}_{2}}=\underset{{{t}_{2}}\in {{G}_{2}}}{\mathop{\bigcup }}\,{{t}_{2}}{{G}_{2}} \\ & {{g}_{1}}{{G}_{2}}\subset G \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{{g}_{1}}{{G}_{2}}\subset G-{{G}_{2}}\subset {{G}_{1}}.
So we have for g2G2{{g}_{2}}\in {{G}_{2}}, g1G1, s.t. g1g2=g1\exists {{g}_{1}}'\in {{G}_{1}},\text{ }s.t.\text{ }{{g}_{1}}{{g}_{2}}={{g}_{1}}'.
g11g1g2=g11g1\Rightarrow {{g}_{1}}^{-1}{{g}_{1}}{{g}_{2}}={{g}_{1}}^{-1}{{g}_{1}}'
(g11g1)g2=g11g1\Rightarrow \left( {{g}_{1}}^{-1}{{g}_{1}} \right){{g}_{2}}={{g}_{1}}^{-1}{{g}_{1}}'
g2=g11g1G1\Rightarrow {{g}_{2}}={{g}_{1}}^{-1}{{g}_{1}}'\notin {{G}_{1}},
which is contradictious to the operation closure of G1{{G}_{1}}.
Thus the proposition is proved.

Hw7:在R/I{0}R/I\ne \left\{ 0 \right\}的情况下:

1)若R/IR/I是交换环,RR不一定也是交换环。

Proof:
R/IR/I is a commutative ring
(a+I)(b+I)=(b+I)(a+I), a,bRab+I=ba+Iab=ba or abba\begin{aligned} & \Rightarrow \left( a+I \right)\left( b+I \right)=\left( b+I \right)\left( a+I \right),\text{ }\forall a,b\in R \\ & \Rightarrow ab+I=ba+I \\ & \Rightarrow ab=ba\text{ }or\text{ }ab\ne ba \\ \end{aligned}

  1. e.g.1 Let R=Mn(C)R={{M}_{n}}\left( \mathbb{C} \right). M=(mij)n×nR, mijC\forall M={{\left( {{m}_{ij}} \right)}_{n\times n}}\in R,\text{ }{{m}_{ij}}\in \mathbb{C}, note that
    M=(Re[mij])n×n.\left| M \right|={{\left( \operatorname{Re}\left[ {{m}_{ij}} \right] \right)}_{n\times n}}.
    P=(pij)n×n, Q=(qij)n×nMn(C), pij,qijC,\forall P={{\left( {{p}_{ij}} \right)}_{n\times n}},\text{ }Q={{\left( {{q}_{ij}} \right)}_{n\times n}}\in {{M}_{n}}\left( \mathbb{C} \right),\text{ }{{p}_{ij}},{{q}_{ij}}\in \mathbb{C}, define that
    P×Q:=(tij)n×n, tij=k=1npikqkjP\times Q:={{\left( {{t}_{ij}} \right)}_{n\times n}},\text{ }{{t}_{ij}}=\sum\limits_{k=1}^{n}{{{p}_{ik}}{{q}_{kj}}}
    PQ:=P×Q=(wij)n×n, wij=k=1nRe[pik]Re[qkj],P\otimes Q:=\left| P \right|\times \left| Q \right|={{\left( {{w}_{ij}} \right)}_{n\times n}},\text{ }{{w}_{ij}}=\sum\limits_{k=1}^{n}{\operatorname{Re}\left[ {{p}_{ik}} \right]\operatorname{Re}\left[ {{q}_{kj}} \right]},
    P+Q:=(vij)n×n, vij=pij+qij.P+Q:={{\left( {{v}_{ij}} \right)}_{n\times n}},\text{ }{{v}_{ij}}={{p}_{ij}}+{{q}_{ij}}.
    First we prove that (R,,+)\left( R,\otimes ,+ \right) is a ring but not commutative for \otimes.
    Obviously (R,+)\left( R,+ \right) is an abelian group.
    U,V,WR\forall U,V,W\in R,
    UV=U×VMn(R)Mn(C),U\otimes V=\left| U \right|\times \left| V \right|\in {{M}_{n}}\left( \mathbb{R} \right)\subseteq {{M}_{n}}\left( \mathbb{C} \right),
    thus \otimes is closed.
     (UV)W= U×V ×W=(U×V)×W=U×(V×W)=U× V×W =U(VW),\begin{aligned} & \text{ }\left( U\otimes V \right)\otimes W \\ & =\left| \text{ }\left| U \right|\times \left| V \right|\text{ } \right|\times \left| W \right| \\ & =\left( \left| U \right|\times \left| V \right| \right)\times \left| W \right| \\ & =\left| U \right|\times \left( \left| V \right|\times \left| W \right| \right) \\ & =\left| U \right|\times \left| \text{ }\left| V \right|\times \left| W \right|\text{ } \right| \\ & =U\otimes \left( V\otimes W \right) \\ \end{aligned},
    thus \otimes is associated.
     (U+V)W=U+V×W=(U+V)×W=U×W+V×W=UW+VW,\begin{aligned} & \text{ }\left( U+V \right)\otimes W \\ & =\left| U+V \right|\times \left| W \right| \\ & =\left( \left| U \right|+\left| V \right| \right)\times \left| W \right| \\ & =\left| U \right|\times \left| W \right|+\left| V \right|\times \left| W \right| \\ & =U\otimes W+V\otimes W \\ \end{aligned},
    U(V+W)=U×V+W=U×V+U×W=UV+UW,U\otimes \left( V+W \right)=\left| U \right|\times \left| V+W \right|=\left| U \right|\times \left| V \right|+\left| U \right|\times \left| W \right|=U\otimes V+U\otimes W,
    thus distribution law is satisfied.
    So we have proved that (R,,+)\left( R,\otimes ,+ \right) is a ring, but \otimes is obviously not commutative.
    Let I=Mn(R)I={{M}_{n}}\left( \mathbb{R} \right), then obviously we have (I,+)\left( I,+ \right) is an abelian group and
    IRI & RII,I\otimes R\subseteq I\text{ }\And \text{ }R\otimes I\subseteq I,
    thus II is an ideal of RR.
    So we have the quotient ring R/I{0}R/I\ne \left\{ 0 \right\}. Then we want to prove that R/IR/I is commutative for \otimes.
    P,QR\forall P,Q\in R, we have
    PQ, QPI=Mn(R)P\otimes Q,\text{ }Q\otimes P\in I={{M}_{n}}\left( \mathbb{R} \right)
    Take P QP~\otimes Q as an example, we point out that PQ+I=I.P\otimes Q+I=I.
    PQIP\otimes Q\in I & II is an ideal (also is a subring) PQ+II\Rightarrow P\otimes Q+I\subseteq I.
    (I,+)\left( I,+ \right) is an abelian group \Rightarrow (PQ)I\exists \left( -P\otimes Q \right)\in I, and we have PQ+II-P\otimes Q+I\subseteq I
    IPQ+I\Rightarrow I\subseteq P\otimes Q+I.
    Thus we have PQ+I=I.P\otimes Q+I=I.
    So we have
    PQ+I=QP+I=I,P\otimes Q+I=Q\otimes P+I=I,
    that is
    (P+I)(Q+I)=(Q+I)(P+I),\left( P+I \right)\otimes \left( Q+I \right)=\left( Q+I \right)\otimes \left( P+I \right),
    thus R/IR/I is commutative for \otimes.
    Thus we have the case where RR is not commutative but R/IR/I is commutative.
  2. e.g. 2. (Z,+,×)\left( \mathbb{Z},+,\times \right) obviously is a ring and a commutative ring.
    Consider the ideal I=2ZI=2\mathbb{Z}.
    We have a,bZ, ab=ba\forall a,b\in \mathbb{Z},\text{ }ab=baab+I=ba+I\Rightarrow ab+I=ba+I, that is
    (a+I)(b+I)=(b+I)(a+I)\left( a+I \right)\left( b+I \right)=\left( b+I \right)\left( a+I \right)
    which shows that R/I\mathbb{R}/I is a commutative ring.
    Thus we have the case where R/I & RR/I\text{ }\And \text{ }R are both commutative rings.

2)若R/IR/I是含幺环,RR不一定也是含幺环。

Proof:
R/IR/I is a unital ring
cR, s.t. (a+I)(c+I)=a+I, aRac+I=a+Iac=a or aca\begin{aligned} & \Rightarrow \exists c\in R,\text{ }s.t.\text{ }\left( a+I \right)\left( c+I \right)=a+I,\text{ }\forall a\in R \\ & \Rightarrow ac+I=a+I \\ & \Rightarrow ac=a\text{ }or\text{ }ac\ne a \\ \end{aligned}

  1. e.g. 1. (3Z,+,×)\left( 3\mathbb{Z},+,\times \right) is obviously a ring but not a unital ring. Consider the ideal I=6ZI=6\mathbb{Z}, we have
    3Z/6Z={a+6Za3Z}={ {3(n1+2n2)} n1,n2Z },3\mathbb{Z}/6\mathbb{Z}=\left\{ \left. a+6\mathbb{Z} \right|a\in 3\mathbb{Z} \right\}=\left\{ \left. \text{ }\left\{ 3\left( {{n}_{1}}+2{{n}_{2}} \right) \right\}\text{ } \right|{{n}_{1}},{{n}_{2}}\in \mathbb{Z}\text{ } \right\},
    that is
    3Z/6Z={0,1},3\mathbb{Z}/6\mathbb{Z}=\left\{ \overline{0},\overline{1} \right\},
    in which bk(k=0,1,2)\forall b\in \overline{k}\left( k=0,1,2 \right), b3k(mod2)\frac{b}{3}\equiv k\left( \bmod 2 \right). Obviously the unit of 3Z/6Z3\mathbb{Z}/6\mathbb{Z} is 1\overline{1}.
    Thus we have the case where RR is not a unital ring but R/IR/I is a unital ring.
  2. Consider R=ZR=\mathbb{Z}I=3ZI=3\mathbb{Z},
    obviously (R,+,×)\left( R,+,\times \right) is a unital ring.
    R/I={0,1,2}{0}R/I=\left\{ \overline{0},\overline{1},\overline{2} \right\}\ne \left\{ 0 \right\} is also a ring and has unit 1\overline{1}, thus is also a unital ring.
    Thus we have the case where both RR and R/IR/I are unital rings.

Hw8:证明当PP是素数时Z/P\mathbb{Z}/P是域 ;

证明:

  1. 首先有PZ>0\forall P\in {{\mathbb{Z}}_{>0}}(Z/P,+)\left( \mathbb{Z}/P,+ \right)是一个阿贝尔群。
    Z/P={0,1,...,P1}\mathbb{Z}/P=\left\{ \overline{0},\overline{1},...,\overline{P-1} \right\}
    运算封闭性显然满足.
    结合律和交换律继承实数运算的结合律和交换律.
    加法单位元:0\overline{0}.
    可逆性:aZ/P, a{0,1,...,P1}\forall \overline{a}\in \mathbb{Z}/P,\text{ }a\in \left\{ 0,1,...,P-1 \right\} PaZ/P\exists \text{ }\overline{P-a}\in \mathbb{Z}/P(注:P=0\overline{P}=\overline{0}),使得
    a+Pa=P=0.\overline{a}+\overline{P-a}=\overline{P}=\overline{0}.
  2. 然后有(Z/P,×)\left( \mathbb{Z}/P,\times \right)是一个阿贝尔幺半群。
    运算封闭性显然成立。
    结合律和交换律:继承实数加法的结合律和交换律。
    单位元:1\overline{1}
    所以(Z/P,×)\left( \mathbb{Z}/P,\times \right)是一个阿贝尔幺半群。
  3. 环的分配律条件继承实数运算的分配律。
  4. PP是素数时,(Z/P\{0},×)\left( \mathbb{Z}/P\backslash \left\{ \overline{0} \right\},\times \right)是一个群。
    1. 运算封闭性:a,b[(Z/P)\{0}]\forall \overline{a},\overline{b}\in \left[ \left( \mathbb{Z}/P \right)\backslash \left\{ \overline{0} \right\} \right]a,b{1,2,...,P1}a,b\in \left\{ 1,2,...,P-1 \right\},根据算术基本定理,abab可以被分解成若干质因子的乘积且在不考虑顺序的意义下形式唯一。设pab{{p}_{ab}}abab的任意一个质因子,则有pabmin{a,b}<P{{p}_{ab}}\le \min \left\{ a,b \right\}<P,所以有pabP{{p}_{ab}}\ne P,即PP不是abab的质因子。nZ>0\forall n\in {{\mathbb{Z}}_{>0}},素数PPnPnP的质因子,因此abnPab\ne nP,即ab0(modP)ab\ne 0\left( \bmod P \right),即ab0\overline{a}\overline{b}\ne \overline{0},所以有ab[(Z/P)\{0}]\overline{a}\overline{b}\in \left[ \left( \mathbb{Z}/P \right)\backslash \left\{ \overline{0} \right\} \right]
    2. 结合律:继承(Z/P,×)\left( \mathbb{Z}/P,\times \right)的结合律。
    3. 单位元:1\overline{1}
    4. 可逆性:a[(Z/P)\{0}], a{1,2,...,P1}\forall \overline{a}\in \left[ \left( \mathbb{Z}/P \right)\backslash \left\{ \overline{0} \right\} \right],\text{ }a\in \left\{ 1,2,...,P-1 \right\}
      a=1a=1时显然存在1\overline{1},使得a1=1a=1\overline{a}\centerdot \overline{1}=\overline{1}\centerdot \overline{a}=\overline{1}
      a>1a>1时,考虑集合
      G:={nP=ba+cn=1,2,...,a1, 1bP2, 0ca1, b,cZ}G:=\left\{ \left. nP=ba+c \right|n=1,2,...,a-1,\text{ }1\le b\le P-2,\text{ }0\le c\le a-1,\text{ }b,c\in \mathbb{Z} \right\}
      (注意bP1b\ne P-1,因为c=max{G}(P1)a=(a1)P(P1)a=aP<0c=\max \left\{ G \right\}-\left( P-1 \right)a=\left( a-1 \right)P-\left( P-1 \right)a=a-P<0
      考虑GG中的元素nP=ba+cnP=ba+c
      抽象代数练习(I)
      我们指出,对于n1P=b1a+c1{{n}_{1}}P={{b}_{1}}a+{{c}_{1}}n2P=b2a+c2{{n}_{2}}P={{b}_{2}}a+{{c}_{2}},若n1n2{{n}_{1}}\ne {{n}_{2}},则有c1c2{{c}_{1}}\ne {{c}_{2}}
      不妨令n2>n1{{n}_{2}}>{{n}_{1}}c1=c2{{c}_{1}}={{c}_{2}},则有
      n2Pn1P=(b2a+c2)(b1a+c1)(n2n1)P=(b2b1)a, 1b2b1P2\begin{matrix} {{n}_{2}}P-{{n}_{1}}P=\left( {{b}_{2}}a+{{c}_{2}} \right)-\left( {{b}_{1}}a+{{c}_{1}} \right) \\ \Rightarrow \left( {{n}_{2}}-{{n}_{1}} \right)P=\left( {{b}_{2}}-{{b}_{1}} \right)a,\text{ }1\le {{b}_{2}}-{{b}_{1}}\le P-2 \\ \end{matrix}
      这与前面已证明的“素数PP不是(b2b1)a\left( {{b}_{2}}-{{b}_{1}} \right)a的质因子”产生矛盾。
      所以在集合GG里我们可构建单射
      f:{n}{c}ncf:\begin{matrix} \left\{ n \right\} & \mapsto & \left\{ c \right\} \\ n & \mapsto & c \\ \end{matrix}
      #{n}#{c}\Rightarrow \#\left\{ n \right\}\le \#\left\{ c \right\}
      G={1,2,...,(a1)P}G=\left\{ 1,2,...,\left( a-1 \right)P \right\}中,显然有#{n}=#G=a1\#\left\{ n \right\}=\#G=a-1.
      PP不是abab的质因数以及c=nPbaZc=nP-ba\in \mathbb{Z}, 0ca10\le c\le a-1得到
      c{1,2,...,a1}#{c}a1c\in \left\{ 1,2,...,a-1 \right\}\Rightarrow \#\left\{ c \right\}\le a-1
      所以有a1#{c}a1   ⁣ ⁣# ⁣ ⁣ {c}=a1a-1\le \#\left\{ c \right\}\le a-1\text{ }\Rightarrow \text{ }\!\!\#\!\!\text{ }\left\{ c \right\}=a-1,即有
      {c}={1,...,a1}\left\{ c \right\}=\left\{ 1,...,a-1 \right\}
      所以n{1,2,...,a1},b{1,2,...,P2},\exists n'\in \left\{ 1,2,...,a-1 \right\},b'\in \left\{ 1,2,...,P-2 \right\},使得
      nP=ba+(a1)nP+1=(b+1)a, b+1{2,3,...,P1}\begin{matrix} n'P=b'a+\left( a-1 \right) \\ \Rightarrow n'P+1=\left( b'+1 \right)a,\text{ }b'+1\in \left\{ 2,3,...,P-1 \right\} \\ \end{matrix}
      所以a(b+1)=(b+1)a1(modP)a\left( b'+1 \right)=\left( b'+1 \right)a\equiv 1\left( \bmod P \right),即存在b+1\overline{b'+1},使得ab+1=b+1a=1\overline{a}\centerdot \overline{b'+1}=\overline{b'+1}\centerdot \overline{a}=\overline{1}
      可逆性得证。

Hw9:End(R):={f:RRf is a ring morphism}End\left( R \right):=\left\{ \left. f:R\to R \right|f\text{ is a ring morphism} \right\} 是含幺环。

证明:
Proof:
(R,+,×)\left( R,+,\times \right) is a ring and End(R)={f:RRf is a ring morphism}End\left( R \right)=\left\{ \left. f:R\to R \right|f\text{ is a ring morphism} \right\}. f1,f2End(R)\forall {{f}_{1}},{{f}_{2}}\in End\left( R \right), define operations \otimes and \oplus as below:
f1f2:RRxf1[f2(x)],{{f}_{1}}\otimes {{f}_{2}}:\begin{matrix} R & \to & R \\ x & \to & {{f}_{1}}\left[ {{f}_{2}}\left( x \right) \right] \\ \end{matrix},
f1f2:RRxf1(x)+f2(x).{{f}_{1}}\oplus {{f}_{2}}:\begin{matrix} R & \to & R \\ x & \to & {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right) \\ \end{matrix}.

  1. First we prove that (End(R),)\left( End\left( R \right),\oplus \right) is an abelian group.
    Operation closure:
    f1,f2End(R), xR, (f1f2)(x)=f1(x)+f2(x)\forall {{f}_{1}},{{f}_{2}}\in End\left( R \right),\text{ }\forall x\in R,\text{ }\left( {{f}_{1}}\oplus {{f}_{2}} \right)\left( x \right)={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right), in which f1(x)R{{f}_{1}}\left( x \right)\in R and
    f2(x)R{{f}_{2}}\left( x \right)\in R. According to the closure of operation ++ of RR, we have
    f1(x)+f2(x)R,{{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)\in R,
    which means f1f2:RR{{f}_{1}}\oplus {{f}_{2}}:R\to R.
    Associative law & commutative law:
    f1,f2,f3End(R),xR\forall {{f}_{1}},{{f}_{2}},{{f}_{3}}\in End\left( R \right),\forall x\in R, we have
    {[(f1f2)f3](x)=(f1f2)(x)+f3(x)=f1(x)+f2(x)+f3(x)[f1(f2f3)](x)=f1(x)+(f2f3)(x)=f1(x)+f2(x)+f3(x)\left\{ \begin{aligned} & \left[ \left( {{f}_{1}}\oplus {{f}_{2}} \right)\oplus {{f}_{3}} \right]\left( x \right)=\left( {{f}_{1}}\oplus {{f}_{2}} \right)\left( x \right)+{{f}_{3}}\left( x \right)={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+{{f}_{3}}\left( x \right) \\ & \left[ {{f}_{1}}\oplus \left( {{f}_{2}}\oplus {{f}_{3}} \right) \right]\left( x \right)={{f}_{1}}\left( x \right)+\left( {{f}_{2}}\oplus {{f}_{3}} \right)\left( x \right)={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+{{f}_{3}}\left( x \right) \\ \end{aligned} \right.
    (f1f2)f3=f1(f2f3),\Rightarrow \left( {{f}_{1}}\oplus {{f}_{2}} \right)\oplus {{f}_{3}}={{f}_{1}}\oplus \left( {{f}_{2}}\oplus {{f}_{3}} \right),
    {(f1f2)(x)=f1(x)+f2(x)(f2f1)(x)=f2(x)+f1(x)  (f1f2)(x)=(f2f1)(x)\left\{ \begin{aligned} & \left( {{f}_{1}}\oplus {{f}_{2}} \right)\left( x \right)={{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right) \\ & \left( {{f}_{2}}\oplus {{f}_{1}} \right)\left( x \right)={{f}_{2}}\left( x \right)+{{f}_{1}}\left( x \right) \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left( {{f}_{1}}\oplus {{f}_{2}} \right)\left( x \right)=\left( {{f}_{2}}\oplus {{f}_{1}} \right)\left( x \right)
    Unit element:
    Consider map f+(x)=0, xR{{f}_{+}}\left( x \right)=0,\text{ }\forall x\in R. Obviously f+End(R){{f}_{+}}\in End\left( R \right), and we have:
    fEnd(R), xR\forall f\in End\left( R \right),\text{ }\forall x\in R,
    {(ff+)(x)=f(x)+f+(x)=f(x)+0=f(x)(f+f)(x)=f+(x)+f(x)=0+f(x)=f(x)\left\{ \begin{aligned} & \left( f\oplus {{f}_{+}} \right)\left( x \right)=f\left( x \right)+{{f}_{+}}\left( x \right)=f\left( x \right)+0=f\left( x \right) \\ & \left( {{f}_{+}}\oplus f \right)\left( x \right)={{f}_{+}}\left( x \right)+f\left( x \right)=0+f\left( x \right)=f\left( x \right) \\ \end{aligned} \right.
    ff+=f+f=f,\Rightarrow f\oplus {{f}_{+}}={{f}_{+}}\oplus f=f,
    which means f+End(R){{f}_{+}}\in End\left( R \right) is the unit element.
    Invertibility:
    f1End(R),\forall {{f}_{1}}\in End\left( R \right), consider the map f2End(R), f2(x)=f1(x){{f}_{2}}\in End\left( R \right),\text{ }{{f}_{2}}\left( x \right)=-{{f}_{1}}\left( x \right), then obviously f2{{f}_{2}} is the inverse of f1{{f}_{1}}.
    Thus (End(R),)\left( End\left( R \right),\oplus \right) is an abelian group.
  2. Then we prove that (End(R),)\left( End\left( R \right),\otimes \right) is a unital group.
    Operation closure:
    f1,f2End(R), xR\forall {{f}_{1}},{{f}_{2}}\in End\left( R \right),\text{ }\forall x\in R, f2(x)R  (f1f2)(x)=f1[f2(x)]R{{f}_{2}}\left( x \right)\in R\text{ }\Rightarrow \text{ }\left( {{f}_{1}}\otimes {{f}_{2}} \right)\left( x \right)={{f}_{1}}\left[ {{f}_{2}}\left( x \right) \right]\in R
     f1f2End(R)\Rightarrow \text{ }{{f}_{1}}\otimes {{f}_{2}}\in End\left( R \right).
    Associative law:
    f1,f2,f3End(R), xR\forall {{f}_{1}},{{f}_{2}},{{f}_{3}}\in End\left( R \right),\text{ }\forall x\in R, we have
    {[(f1f2)f3](x)=(f1f2)[f3(x)]=f1[f2[f3(x)]][f1(f2f3)](x)=f1[(f2f3)(x)]=f1[f2[f3(x)]]\left\{ \begin{aligned} & \left[ \left( {{f}_{1}}\otimes {{f}_{2}} \right)\otimes {{f}_{3}} \right]\left( x \right)=\left( {{f}_{1}}\otimes {{f}_{2}} \right)\left[ {{f}_{3}}\left( x \right) \right]={{f}_{1}}\left[ {{f}_{2}}\left[ {{f}_{3}}\left( x \right) \right] \right] \\ & \left[ {{f}_{1}}\otimes \left( {{f}_{2}}\otimes {{f}_{3}} \right) \right]\left( x \right)={{f}_{1}}\left[ \left( {{f}_{2}}\otimes {{f}_{3}} \right)\left( x \right) \right]={{f}_{1}}\left[ {{f}_{2}}\left[ {{f}_{3}}\left( x \right) \right] \right] \\ \end{aligned} \right.
    (f1f2)f3=f1(f2f3).\Rightarrow \left( {{f}_{1}}\otimes {{f}_{2}} \right)\otimes {{f}_{3}}={{f}_{1}}\otimes \left( {{f}_{2}}\otimes {{f}_{3}} \right).
    Unit element:
    Obviously I(x)=xI\left( x \right)=x is the unit element.
    Thus (End(R),)\left( End\left( R \right),\oplus \right) is an abelian group.
  3. Last we prove End(R)End\left( R \right) has distribution law.
    f1,f2,f3End(R), xR\forall {{f}_{1}},{{f}_{2}},{{f}_{3}}\in End\left( R \right),\text{ }\forall x\in R, we have
     [(f1f2)f3](x)=(f1f2)[f3(x)]=f1[f3(x)]+f2[f3(x)]=[f1f3](x)+[f2f3](x),\begin{aligned} & \text{ }\left[ \left( {{f}_{1}}\oplus {{f}_{2}} \right)\otimes {{f}_{3}} \right]\left( x \right) \\ & =\left( {{f}_{1}}\oplus {{f}_{2}} \right)\left[ {{f}_{3}}\left( x \right) \right] \\ & ={{f}_{1}}\left[ {{f}_{3}}\left( x \right) \right]+{{f}_{2}}\left[ {{f}_{3}}\left( x \right) \right] \\ & =\left[ {{f}_{1}}\otimes {{f}_{3}} \right]\left( x \right)+\left[ {{f}_{2}}\otimes {{f}_{3}} \right]\left( x \right) \\ \end{aligned},
     [f1(f2f3)](x)=f1[[f2f3](x)]=f1[f2(x)+f3(x)]=f1[f2(x)]+f1[f3(x)](Because f1 is a ring morphism)=[f1f2](x)+[f1f3](x).\begin{aligned} & \text{ }\left[ {{f}_{1}}\otimes \left( {{f}_{2}}\oplus {{f}_{3}} \right) \right]\left( x \right) \\ & ={{f}_{1}}\left[ \left[ {{f}_{2}}\oplus {{f}_{3}} \right]\left( x \right) \right] \\ & ={{f}_{1}}\left[ {{f}_{2}}\left( x \right)+{{f}_{3}}\left( x \right) \right] \\ & ={{f}_{1}}\left[ {{f}_{2}}\left( x \right) \right]+{{f}_{1}}\left[ {{f}_{3}}\left( x \right) \right]\left( \text{Because }{{f}_{1}}\text{ is a ring morphism} \right) \\ & =\left[ {{f}_{1}}\otimes {{f}_{2}} \right]\left( x \right)+\left[ {{f}_{1}}\otimes {{f}_{3}} \right]\left( x \right) \\ \end{aligned}.

In conclusion, End(R)End\left( R \right) is a unital ring.

Hw10:证明S3Aut(S3)=Inn(S3){{S}_{3}}\cong Aut\left( {{S}_{3}} \right)=Inn\left( {{S}_{3}} \right)

解:
关于此式的证明见博客Aut(S3)=Inn(S3)的证明和元素寻找
On {1,2,3}\left\{ 1,2,3 \right\} define permutation fijk:={1i2j3k, ijk{{f}_{ijk}}:=\left\{ \begin{aligned} & 1\to i \\ & 2\to j \\ & 3\to k \\ \end{aligned} \right.,\text{ }i\ne j\ne k.
Aut(S3)=Inn(S3)={g123,g132,g213,g231,g312,g321}Aut\left( {{S}_{3}} \right)=Inn\left( {{S}_{3}} \right)=\left\{ {{g}_{123}},{{g}_{132}},{{g}_{213}},{{g}_{231}},{{g}_{312}},{{g}_{321}} \right\},其中
g123(=id):{f123f123f123f123=f123f132f123f132f123=f132f213f123f213f123=f213f231f123f231f123=f231f312f123f312f123=f312f321f123f321f123=f321, g132:{f123f132f123f132=f123f132f132f132f132=f132f213f132f213f132=f321f231f132f231f132=f312f312f132f312f132=f231f321f132f321f132=f213{{g}_{123}}\left( =id \right):\left\{ \begin{aligned} & {{f}_{123}}\to {{f}_{123}}{{f}_{123}}{{f}_{123}}={{f}_{123}} \\ & {{f}_{132}}\to {{f}_{123}}{{f}_{132}}{{f}_{123}}={{f}_{132}} \\ & {{f}_{213}}\to {{f}_{123}}{{f}_{213}}{{f}_{123}}={{f}_{213}} \\ & {{f}_{231}}\to {{f}_{123}}{{f}_{231}}{{f}_{123}}={{f}_{231}} \\ & {{f}_{312}}\to {{f}_{123}}{{f}_{312}}{{f}_{123}}={{f}_{312}} \\ & {{f}_{321}}\to {{f}_{123}}{{f}_{321}}{{f}_{123}}={{f}_{321}} \\ \end{aligned} \right.,\text{ }{{g}_{132}}:\left\{ \begin{aligned} & {{f}_{123}}\to {{f}_{132}}{{f}_{123}}{{f}_{132}}={{f}_{123}} \\ & {{f}_{132}}\to {{f}_{132}}{{f}_{132}}{{f}_{132}}={{f}_{132}} \\ & {{f}_{213}}\to {{f}_{132}}{{f}_{213}}{{f}_{132}}={{f}_{321}} \\ & {{f}_{231}}\to {{f}_{132}}{{f}_{231}}{{f}_{132}}={{f}_{312}} \\ & {{f}_{312}}\to {{f}_{132}}{{f}_{312}}{{f}_{132}}={{f}_{231}} \\ & {{f}_{321}}\to {{f}_{132}}{{f}_{321}}{{f}_{132}}={{f}_{213}} \\ \end{aligned} \right.,g213:{f123f213f123f213=f123f132f213f132f213=f321f213f213f213f213=f213f231f213f231f213=f312f312f213f312f213=f231f321f213f321f213=f132, g231:{f123f231f123f312=f123f132f231f132f312=f213f213f231f213f312=f321f231f231f231f312=f231f312f231f312f312=f312f321f231f321f312=f132,{{g}_{213}}:\left\{ \begin{aligned} & {{f}_{123}}\to {{f}_{213}}{{f}_{123}}{{f}_{213}}={{f}_{123}} \\ & {{f}_{132}}\to {{f}_{213}}{{f}_{132}}{{f}_{213}}={{f}_{321}} \\ & {{f}_{213}}\to {{f}_{213}}{{f}_{213}}{{f}_{213}}={{f}_{213}} \\ & {{f}_{231}}\to {{f}_{213}}{{f}_{231}}{{f}_{213}}={{f}_{312}} \\ & {{f}_{312}}\to {{f}_{213}}{{f}_{312}}{{f}_{213}}={{f}_{231}} \\ & {{f}_{321}}\to {{f}_{213}}{{f}_{321}}{{f}_{213}}={{f}_{132}} \\ \end{aligned} \right.,\text{ }{{g}_{231}}:\left\{ \begin{aligned} & {{f}_{123}}\to {{f}_{231}}{{f}_{123}}{{f}_{312}}={{f}_{123}} \\ & {{f}_{132}}\to {{f}_{231}}{{f}_{132}}{{f}_{312}}={{f}_{213}} \\ & {{f}_{213}}\to {{f}_{231}}{{f}_{213}}{{f}_{312}}={{f}_{321}} \\ & {{f}_{231}}\to {{f}_{231}}{{f}_{231}}{{f}_{312}}={{f}_{231}} \\ & {{f}_{312}}\to {{f}_{231}}{{f}_{312}}{{f}_{312}}={{f}_{312}} \\ & {{f}_{321}}\to {{f}_{231}}{{f}_{321}}{{f}_{312}}={{f}_{132}} \\ \end{aligned} \right.,
g312:{f123f312f123f231=f123f132f312f132f231=f321f213f312f213f231=f132f231f312f231f231=f231f312f312f312f231=f312f321f312f321f231=f213, g321:{f123f321f123f321=f123f132f321f132f321=f213f213f321f213f321=f132f231f321f231f321=f312f312f321f312f321=f231f321f321f321f321=f321{{g}_{312}}:\left\{ \begin{aligned} & {{f}_{123}}\to {{f}_{312}}{{f}_{123}}{{f}_{231}}={{f}_{123}} \\ & {{f}_{132}}\to {{f}_{312}}{{f}_{132}}{{f}_{231}}={{f}_{321}} \\ & {{f}_{213}}\to {{f}_{312}}{{f}_{213}}{{f}_{231}}={{f}_{132}} \\ & {{f}_{231}}\to {{f}_{312}}{{f}_{231}}{{f}_{231}}={{f}_{231}} \\ & {{f}_{312}}\to {{f}_{312}}{{f}_{312}}{{f}_{231}}={{f}_{312}} \\ & {{f}_{321}}\to {{f}_{312}}{{f}_{321}}{{f}_{231}}={{f}_{213}} \\ \end{aligned} \right.,\text{ }{{g}_{321}}:\left\{ \begin{aligned} & {{f}_{123}}\to {{f}_{321}}{{f}_{123}}{{f}_{321}}={{f}_{123}} \\ & {{f}_{132}}\to {{f}_{321}}{{f}_{132}}{{f}_{321}}={{f}_{213}} \\ & {{f}_{213}}\to {{f}_{321}}{{f}_{213}}{{f}_{321}}={{f}_{132}} \\ & {{f}_{231}}\to {{f}_{321}}{{f}_{231}}{{f}_{321}}={{f}_{312}} \\ & {{f}_{312}}\to {{f}_{321}}{{f}_{312}}{{f}_{321}}={{f}_{231}} \\ & {{f}_{321}}\to {{f}_{321}}{{f}_{321}}{{f}_{321}}={{f}_{321}} \\ \end{aligned} \right.