机器学习学习笔记 第十八章 SVM调参并观察

支持向量机(SVM)

SVM调参

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

import seaborn as sns;sns.set()
#先把可能或不一定用到的库全导进来
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')#先假设一堆数据,random_state为随机种子
<matplotlib.collections.PathCollection at 0x1e4832b3be0>

机器学习学习笔记 第十八章 SVM调参并观察

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot(xfit, xfit+0.65, '-k')
plt.plot(xfit, 0.5*xfit+1.6, '-k')
plt.plot(xfit, -0.2*xfit+2.9, '-k')
plt.xlim(-1, 3.5)
#此处随机画出几条线,大家可以判断哪条线是理两边雷区都比较远的,很明显是中间那条对吧
(-1, 3.5)

机器学习学习笔记 第十八章 SVM调参并观察

# 那么我们来试一下是不是中间那条比较好呢
xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
    yfit = m * xfit + b
    plt.plot(xfit, yfit, '-k')
    plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',
                     color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);#可见中间那条的确比较好

机器学习学习笔记 第十八章 SVM调参并观察

训练一个基本的SVM

from sklearn.svm import SVC # 这个是支持向量机分类器的意思support vector classifier
model = SVC(kernel='linear')
model.fit(X,y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
#绘图函数,不要深究,当模板用就可以了
def plot_svc_decision_function(model, ax=None, plot_support=True):
    """Plot the decision function for a 2D SVC"""
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    
    # create grid to evaluate model
    x = np.linspace(xlim[0], xlim[1], 30)
    y = np.linspace(ylim[0], ylim[1], 30)
    Y, X = np.meshgrid(y, x)
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    P = model.decision_function(xy).reshape(X.shape)
    
    # plot decision boundary and margins
    ax.contour(X, Y, P, colors='k',
               levels=[-1, 0, 1], alpha=0.5,
               linestyles=['--', '-', '--'])
    
    # plot support vectors
    if plot_support:
        ax.scatter(model.support_vectors_[:, 0],
                   model.support_vectors_[:, 1],
                   s=300, linewidth=1, facecolors='none');
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model)#将刚刚那个模型传进去,电脑会自动把线画出来,找到那几个支持向量

机器学习学习笔记 第十八章 SVM调参并观察

model.support_vectors_#这句可以直接打印出来模型里面的支持向量是哪几个
array([[0.44359863, 3.11530945],
       [2.33812285, 3.43116792],
       [2.06156753, 1.96918596]])
# 接下来我们构建更多的点的
# 构建之后我们发现,原来点的数目变多了,只要支持向量没有发生变化,则画出来的决策边界也不会发生变化
def plot_svm(N=10, ax=None):
    X, y = make_blobs(n_samples=200, centers=2,
                      random_state=0, cluster_std=0.60)
    X = X[:N]
    y = y[:N]
    model = SVC(kernel='linear', C=1E10)
    model.fit(X, y)
    
    ax = ax or plt.gca()
    ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    ax.set_xlim(-1, 4)
    ax.set_ylim(-1, 6)
    plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):# 左边那些点有60个,右边的图有120个
    plot_svm(N, axi)
    axi.set_title('N = {0}'.format(N))

机器学习学习笔记 第十八章 SVM调参并观察

下面我们来看看对于下面这种非一刀就能分出来的情况怎么处理呢

from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)#线性的核函数

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);

机器学习学习笔记 第十八章 SVM调参并观察

这种情况,线性的核函数已经解决不了了,那只能试试高维的核变换了

#加入了新的维度r
from mpl_toolkits import mplot3d
r = np.exp(-(X ** 2).sum(1))
def plot_3D(elev=30, azim=30, X=X, y=y):
    ax = plt.subplot(projection='3d')
    ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
    ax.view_init(elev=elev, azim=azim)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('r')

plot_3D(elev=45, azim=45, X=X, y=y)#其实是人为地给分分颜色

机器学习学习笔记 第十八章 SVM调参并观察

# 那么我们试试引入一个径向基函数
# 用上这个非线性核可以拟合出来更加奇怪的边界形状
clf = SVC(kernel='rbf',C=1E6)
clf.fit(X,y)
SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
            s=300, lw=1, facecolors='none');

机器学习学习笔记 第十八章 SVM调参并观察

调节SVM参数: Soft Margin问题

调节C参数

  • 当C趋近于无穷大时:意味着分类严格不能有错误
  • 当C趋近于很小的时:意味着可以有更大的错误容忍
# 我们再创造一组数据,这组数据中离散程度更大,两堆数据近乎贴在一起
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

机器学习学习笔记 第十八章 SVM调参并观察

X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, C in zip(ax, [10.0, 0.1]):# 我们定义两种C参数,一个是10, 一个是0.1,可以看出,C=0.1的时候决策边界允许容纳更多的错误
    model = SVC(kernel='linear', C=C).fit(X, y)
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('C = {0:.1f}'.format(C), size=14)

机器学习学习笔记 第十八章 SVM调参并观察

X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=1.1)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, gamma in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='rbf', gamma=gamma).fit(X, y)# 这里的高斯核函数里指定了不同的gamma值,gamma值越大,决策边界越复杂
    # 但是比如图一这种,其实使用价值不高的,因为属于过拟合了,很难泛化,也就是真正利用起来的时候不一定就很准
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('gamma = {0:.1f}'.format(gamma), size=14)

机器学习学习笔记 第十八章 SVM调参并观察

对唐宇迪老师的机器学习教程进行笔记整理
编辑日期:2018-10-9
小白一枚,请大家多多指教
转载请注明出处