第二阶段学习笔记

过拟合、欠拟合及其解决方案
模型选择、过拟合和欠拟合
训练误差和泛化误差
在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。
机器学习模型应关注降低泛化误差。

模型选择
验证数据集
从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。

K折交叉验证
由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。

过拟合和欠拟合
接下来,我们将探究模型训练中经常出现的两类典型问题:
一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);
另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。

梯度消失、梯度爆炸以及Kaggle房价预测
梯度消失和梯度爆炸
深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。

当神经网络的层数较多时,模型的数值稳定性容易变差。
假设一个层数为 L 的多层感知机的第 l 层 H(l) 的权重参数为 W(l) ,输出层 H(L) 的权重参数为 W(L) 。为了便于讨论,不考虑偏差参数,且设所有隐藏层的**函数为恒等映射(identity mapping) ϕ(x)=x 。给定输入 X ,多层感知机的第 l 层的输出 H(l)=XW(1)W(2)…W(l) 。此时,如果层数 l 较大, H(l) 的计算可能会出现衰减或爆炸。举个例子,假设输入和所有层的权重参数都是标量,如权重参数为0.2和5,多层感知机的第30层输出为输入 X 分别与 0.230≈1×10−21 (消失)和 530≈9×1020 (爆炸)的乘积。当层数较多时,梯度的计算也容易出现消失或爆炸。

随机初始化模型参数
在神经网络中,通常需要随机初始化模型参数。下面我们来解释这样做的原因。
回顾多层感知机一节描述的多层感知机。为了方便解释,假设输出层只保留一个输出单元 o1 (删去 o2 和 o3 以及指向它们的箭头),且隐藏层使用相同的**函数。如果将每个隐藏单元的参数都初始化为相等的值,那么在正向传播时每个隐藏单元将根据相同的输入计算出相同的值,并传递至输出层。在反向传播中,每个隐藏单元的参数梯度值相等。因此,这些参数在使用基于梯度的优化算法迭代后值依然相等。之后的迭代也是如此。在这种情况下,无论隐藏单元有多少,隐藏层本质上只有1个隐藏单元在发挥作用。因此,正如在前面的实验中所做的那样,我们通常将神经网络的模型参数,特别是权重参数,进行随机初始化。
第二阶段学习笔记
PyTorch的默认随机初始化
随机初始化模型参数的方法有很多。在线性回归的简洁实现中,我们使用torch.nn.init.normal_()使模型net的权重参数采用正态分布的随机初始化方式。

Convolutional Neural Networks
使用全连接层的局限性:
图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
对于大尺寸的输入图像,使用全连接层容易导致模型过大。

使用卷积层的优势:
卷积层保留输入形状。
卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

深度卷积神经网络(AlexNet)
LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。
神经网络发展的限制:数据、硬件

AlexNet
首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。
特征:
8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
将sigmoid**函数改成了更加简单的ReLU**函数。
用Dropout来控制全连接层的模型复杂度。
引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

循环网络进阶
GRU
RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)
门控循环神经⽹络:捕捉时间序列中时间步距离较大的依赖关系
RNN:
第二阶段学习笔记
GRU:
第二阶段学习笔记

注意力机制
在网上看到一篇描写深度学习中注意力机制很详细的文章。
贴一下大神的网址:https://mp.weixin.qq.com/s/3911D_FkTWrtKwBo30vENg