CAS与AQS源码简析

什么是CAS?
CAS(Compare And Swap),顾名思义就是比较并交换。用于解决多线程使用锁带来的性能损耗的问题,是一种非阻塞算法,其交换原理如下图:
 

CAS与AQS源码简析

 
 
CAS用法:
- 数据库中的乐观锁:即表字段+version字段,然后每次更新时就比较当前version版本是否一致,一直才更新并且升级version=version+1。
 
 
- java中用到CAS的类如:java.util.concurrent.atomic.*
 

什么是AQS?
AQS(AbstractQueuedSynchronizer),顾名思义就是抽象队列同步器。由FIFO(先进先出)的阻塞队列和相关同步器组成。这是在concurrent包(并发处理)下。
 

    AbstractQueuedSynchronizer为锁机制维护了一个队列,需要获取锁的线程们排在队列中,只有排在队首的线程才有资格获取锁。

 
 
首先看张图,取自《Java并发编程的艺术》:
 

CAS与AQS源码简析

 
 
然后看如下,AbstractQueuedSynchronizer源码及其分析如下:
/**
* 提供一个阻塞锁和相关依赖FIFO等待队列同步器的实现。
* 这个类支持排他共享模式。排他模式下当一个已获取到了,其他线程尝试获取不可能成功。共享模式可以被多个线程获取。通常子类实现仅支持其中一种,但是也有两种的支持的如ReadWriteLock
* 这个类定义了一个实现了Condition的内部类ConditionObject,用于排他模式。    
* 使用一个基础的同步器需要重新定义以下方法:
* <li> {@link #tryAcquire}
* <li> {@link #tryRelease}
* <li> {@link #tryAcquireShared}
* <li> {@link #tryReleaseShared}
* <li> {@link #isHeldExclusively}
* 以上的每个方法均默认抛出{UnsupportedOperationException}错误,所以以上的几个方法没有提供默认实现,需要子类重写。
* 这个类提供了一个有效的、可伸缩的基础给同步器如状态、acquire获取和的同步器释放参数、内部FIFO等待队。当这些不够用时,可使用atomic、Queue、LockSupport。
*/
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
    private static final long serialVersionUID = 7373984972572414691L;
 
    protected AbstractQueuedSynchronizer() { }
 
    /**
     * 等待队列的node class。Node作为等待队列的节点
     * 这个等待队列是CLH的变体,CLH一般用于自旋锁。使用其代替一般的同步器,但也用了相同的策略来控制。 
     */
    static final class Node {
        /** 共享模式 */
        static final Node SHARED = new Node();
        /** 排他模式 */
        static final Node EXCLUSIVE = null;
        /** 当前线程被取消 */
        static final int CANCELLED =  1;
        /** 当前节点的后继节点包含的线程需要运行*/
        static final int SIGNAL    = -1;
        /** 当前结点在condition队列中 */
        static final int CONDITION = -2;
        /** 当前场景下后续的acquireShared能够得以执行  */
        static final int PROPAGATE = -3;
 
        /** 当前节点的状态。*/
        volatile int waitStatus;
        /** 前驱结点 */
        volatile Node prev;
        /** 后继节点 */
        volatile Node next;
        /** 入队线程 */
        volatile Thread thread;
        /** 存储condition队列中的后继节点 */
        Node nextWaiter;
 
        final boolean isShared() { return nextWaiter == SHARED;}
        /**
         * 返回前驱节点
         */
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }
        ..............................
    }
    /**
     * 仅用于初始化等待队列的head。只能通过setHead修改,当这个head还存在时不能将waitStatus=>cancelled
     */
    private transient volatile Node head;
    /** Tail节点初始化,仅能通过enq追加新的wait node*/
    private transient volatile Node tail;
    /** synchronization state. */
    private volatile int state;
 
    /** CAS原子性的修改 synchronization state ,拉到代码最下面可见其值的设置*/
    protected final boolean compareAndSetState(int expect, int update) {
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }
    static final long spinForTimeoutThreshold = 1000L;
 
    /**
     * 为队列追加node节点
     */
    private Node enq(final Node node) {
        for (;;) {//一直循环入队,直到成功
            Node t = tail;
            if (t == null) { //同样获取尾节点,并且如果为空就将尾节点初始化为头结点head一样
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else { //尾节点不为空就执行addWaiter一样的过程把新的node加到最后
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
 
    /**
     * 新建Node并入队
     */
    private Node addWaiter(Node mode) {
        //新建一个Node
        Node node = new Node(Thread.currentThread(), mode);
        // 存储当前尾节点(当作旧的尾节点)
        Node pred = tail;
        if (pred != null) {  //如果当前尾节点不为空
            node.prev = pred;  //将新建的节点的前驱节点执行旧的为节点
            if (compareAndSetTail(pred, node)) {//CAS原子替换当前尾节点从旧的替换到新建node的位置
                pred.next = node;//将旧的尾节点位置的后置节点执行新建的节点
                return node;
            }
        }
        //如果上面入队失败则调用enq方法入队
        enq(node);
        return node;
    }
    private void setHead(Node node) {
        head = node; //将头结点指向node
        node.thread = null;  //线程置空
        node.prev = null;//因为是头节点了,不用需要前驱结点
    }
 
    /**
     * 唤醒后续节点
     */
    private void unparkSuccessor(Node node) {
        int ws = node.waitStatus;
        if (ws < 0) compareAndSetWaitStatus(node, ws, 0);
        Node s = node.next;
        //如果后置节点是尾节点或Cancelled状态
        if (s == null || s.waitStatus > 0) {
            s = null;  //将当前后置节点置为null
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
 
    /**
     * 共享模式下
     */
    private void doReleaseShared() {
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }
 
    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
 
    /**
     * 取消正在尝试获取锁的节点
     */
    private void cancelAcquire(Node node) {
        if (node == null) return;
        //cancel一个节点时会将当前节点thread置为null
        node.thread = null;
        // 循环跳过已设置了cancelled状态的节点
        Node pred = node.prev;
        while (pred.waitStatus > 0) node.prev = pred = pred.prev;
        //存储上面得到的节点前驱节点
        Node predNext = pred.next;
        //将当前要cancel的节点状态设置CANCELLED
        node.waitStatus = Node.CANCELLED;
 
        //1 如果当前节点node是尾节点。更新尾节点为pred.next指向null,相当于删除了node(和pred到node间为cancel的节点)
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            int ws;
            //2 当前既不是尾节点,也不是head后继节点。设置node的前驱节点waitStatus为SIGNAL,node前驱节点指向后继节点,相当于删除node
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                //3 如果node是head的后继节点。则直接唤醒node的后继节点。在head后面的节点有资格尝试获取锁,但是当前node放齐了当前资格,所以会唤醒其后续的节点
                unparkSuccessor(node);
            }
 
            node.next = node; // help GC
        }
    }
 
    /**
     * 判断当前节点是否挂起
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)  //当前状态下挂起
            return true;
        if (ws > 0) {
            do {//跳过已被设置了cancelled的前驱节点
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /** 将上级的等待状态设为SIGNAL */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
 
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }
 
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
 
    /**
     * 尝试获取锁
     */
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {  //进入循环后会不断的尝试获取
                final Node p = node.predecessor();//获取当前节点的头结点!!只有head头结点才持有锁!!
                //如果当前的前驱节点是头结点则尝试获取锁。
                //如果尝试成功则将当前node设为头结点,并将旧的head设为null便于回收
                //获取失败看是否需要挂起,如果需要挂起则挂起线程等待下一次被唤醒时继续尝试获取锁。
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // 帮助GC
                    failed = false;
                    return interrupted;
                }
                //判断是否挂起(根据Node的状态=-3就会挂起),然后调用刮起的方法(里面调了Thread.interrupted();)
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())  
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    。。。。。。。。。。。。。。。
    // Main exported methods
 
  /** 子类实现的尝试获取锁的方法 */
    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
 
    /** 子类实现尝试释放锁的方法 */
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
 
    /** 子类实现尝试获取共享锁的方法  */
    protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }
 
    /** 子类实现尝试释放共享锁的方法  */
    protected boolean tryReleaseShared(int arg) {
        throw new UnsupportedOperationException();
    }
 
     /** 子类实现排他模式下状态是否占用  */
    protected boolean isHeldExclusively() {
        throw new UnsupportedOperationException();
    }
 
    /**
     * 排他模式,获取互斥锁
     */
    public final void acquire(int arg) {
        //尝试获取锁(tryAcquire在此类中是抛异常的,应在子类实现),
        //如果尝试获取失败就调用acquireQueued再次尝试获取锁,addWaiter适用于新建一个新node
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
 
    public final void acquireInterruptibly(int arg)
             throws InterruptedException {}
    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {}
 
    public final boolean release(int arg) {
        if (tryRelease(arg)) {//尝试释放锁成功
            Node h = head;//获取当前被释放了锁的head头节点
            //如果头节点不为空且当前节点状态正常就唤醒当前节点的后续节点
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
 
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
 
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {... }
 
    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {........ }
 
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
 
    // 以下是队列检查方法
    public final boolean hasQueuedThreads() {
        return head != tail;//队列是否存在
    }
    public final boolean hasContended() {
        return head != null;  //头结点是否为空
    }
    public final Thread getFirstQueuedThread() {
        return (head == tail) ? null : fullGetFirstQueuedThread();
    }
     。。。。。。。。。。
    //工具和监控方法
    public final int getQueueLength() {
        int n = 0;//拿到队列长度
        for (Node p = tail; p != null; p = p.prev) {
            if (p.thread != null)
                ++n;
        }
        return n;
    }
    //获取当前node queue的所有线程
    public final Collection<Thread> getQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
        return list;
    }
    ......的工具类..............................
 
    /**
     * condition queue, 单向队列。线程拿到锁,但条件不足时,会放到这个队列等待被唤醒
     */
    public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        private transient Node firstWaiter; //头结点
        private transient Node lastWaiter;//尾节点
 
        public ConditionObject() { }
 
        private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }
 
        private void doSignal(Node first) {
            do {
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                     (first = firstWaiter) != null);
        }
 
        private void doSignalAll(Node first) {
            lastWaiter = firstWaiter = null;
            do {
                Node next = first.nextWaiter;
                first.nextWaiter = null;
                transferForSignal(first);
                first = next;
            } while (first != null);
        }
 
        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }
 
        public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }
 
        public final void signalAll() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }
 
        public final void awaitUninterruptibly() {
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean interrupted = false;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if (Thread.interrupted())
                    interrupted = true;
            }
            if (acquireQueued(node, savedState) || interrupted)
                selfInterrupt();
        }
 
        private static final int REINTERRUPT =  1;
        private static final int THROW_IE    = -1;
 
        private int checkInterruptWhileWaiting(Node node) {
            return Thread.interrupted() ?
                (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
                0;
        }
 
        private void reportInterruptAfterWait(int interruptMode)
            throws InterruptedException {
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }
 
        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }
 
        public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }
 
        public final boolean awaitUntil(Date deadline)
                throws InterruptedException {
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (System.currentTimeMillis() > abstime) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }
 
        public final boolean await(long time, TimeUnit unit)
                throws InterruptedException {
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }
    。。。。。。。。。。之类的工具类。。。。。。。。
    }
 
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;
 
    static {
        try {
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));
 
        } catch (Exception ex) { throw new Error(ex); }
    }
 
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }
    。。。。。一堆CAS方法。。。。。。。。
}
 
 
 
 
 
 
 
 
 
 
 
 
参考:
以下四篇: