吴恩达--无监督学习

聚类(Clustering)

 

无监督学习:

    什么是非监督学习呢?在课程的一开始,我曾简单的介绍过非监督学习,然而,我们还是有必要将其与监督学习做一下比较。在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:

吴恩达--无监督学习

在这里我们有一系列点,却没有标签。

    因此,图上画的这些点没有标签信息。也就是说,在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法。

    这将是我们介绍的第一个非监督学习算法。当然,此后我们还将提到其他类型的非监督学习算法,它们可以为我们找到其他类型的结构或者其他的一些模式,而不只是簇。

    我们将先介绍聚类算法。此后,我们将陆续介绍其他算法。那么聚类算法一般用来做什么呢?

吴恩达--无监督学习

       我曾经列举过一些应用:比如市场分割。也许你在数据库中存储了许多客户的信息,而你希望将他们分成不同的客户群,这样你可以对不同类型的客户分别销售产品或者分别提供更适合的服务。

       最后,我实际上还在研究如何利用聚类算法了解星系的形成。然后用这个知识,了解一些天文学上的细节问题。好的,这就是聚类算法。这将是我们介绍的第一个非监督学习算法。在下一个视频中,我们将开始介绍一个具体的聚类算法。


K-均值算法

K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。

K-均值是一个迭代算法,假设我们想要将数据聚类成n个组,其方法为:

首先选择K个随机的点,称为聚类中心(cluster centroids);  

 

聚类算法会做两件事:

                     1.簇分配

                     2.移动聚类中心

 

    对于数据集中的每一个数据,按照距离K个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。

计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。

吴恩达--无监督学习

吴恩达--无监督学习

 第一步:不改变聚类中心,而是选出c来最小化代价函数 

 第二步:移动聚类中心,即选择u值来最小化代价函数。   然后迭代

 

下面是一个聚类示例:迭代 1 次,迭代 3 次,迭代 10 次

吴恩达--无监督学习吴恩达--无监督学习吴恩达--无监督学习

算法分为两个步骤

      第一个for循环是赋值步骤,即:对于每一个样例i,计算其应该属于的类。

      第二个for循环是聚类中心的移动,即:对于每一个类k,重新计算该类的质心。

    K-均值算法也可以很便利地用于将数据分为许多不同组,即使在没有非常明显区分的组群的情况下也可以。下图所示的数据集包含身高和体重两项特征构成的,利用K-均值算法将数据分为三类,用于帮助确定将要生产的T-恤衫的三种尺寸。

吴恩达--无监督学习

 

优化目标

吴恩达--无监督学习

 


随机初始化

 

在运行K-均值算法的之前,我们首先要随机初始化所有的聚类中心点,下面介绍怎样做:

  1. 我们应该选择Km即聚类中心点的个数要小于所有训练集实例的数量。

  2. 随机选择K个训练实例,然后令K个聚类中心分别与这K个训练实例相等。

K-均值的一个问题在于,它有可能会停留在一个局部最小值处,而这取决于初始化的情况。

吴恩达--无监督学习

吴恩达--无监督学习

    为了解决这个问题,我们通常需要多次运行K-均值算法,每一次都重新进行随机初始化,最后再比较多次运行K-均值的结果,选择代价函数最小的结果。这种方法在K较小的时候(2--10)还是可行的,但是如果K较大,这么做也可能不会有明显地改善。

***这是聚类的不同情况。所以要进行多次尝试初始化:(对应着不同的局部最优)

吴恩达--无监督学习


选择聚类数

    没有所谓最好的选择聚类数的方法,通常是需要根据不同的问题,人工进行选择的。选择的时候思考我们运用K-均值算法聚类的动机是什么,然后选择能最好服务于该目的标聚类数。当人们在讨论,选择聚类数目的方法时,有一个可能会谈及的方法叫作“肘部法则”。关于“肘部法则”,我们所需要做的是改变吴恩达--无监督学习值,也就是聚类类别数目的总数。我们用一个聚类来运行K均值聚类方法。这就意味着,所有的数据都会分到一个聚类里,然后计算成本函数或者计算畸变函数J。K代表聚类数字。

吴恩达--无监督学习

        我们可能会得到一条类似于这样的曲线。像一个人的肘部。这就是“肘部法则”。你会发现这种模式,它的畸变值会迅速下降,你会在3的时候达到一个肘点。在此之后,畸变值就下降的非常慢,看起来就像使用3个聚类来进行聚类是正确的,这是因为那个点是曲线的肘点,畸变值下降得很快,K=3之后就下降得很慢,那么我们就选K=3。当你应用“肘部法则”的时候,如果你得到了一个像上面这样的图,那么这将是一种用来选择聚类个数的合理方法。

例如,我们的 T-恤制造例子中,我们要将用户按照身材聚类,我们可以分成3个尺寸:S,M,L 。可以分成5个尺寸XS,S,M,XL,L,这样的选择是建立在回答“聚类后我们制造的T-恤是否能较好地适合我们的客户”这个问题的基础上作出的。 当然通常情况会像右边一样所以不指望肘部法则每次都会有效果。