多通道(比如RGB三通道)卷积过程

本文参考自: 原文地址

今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数。 可以查看常用模型,比如lenet 手写体,Alex imagenet 模型, 每一层输出feature map 个数 就是该层卷积核的个数。

1、 一通道单个卷积核卷积过程


2、 一通道 多个卷积核卷积过程

一个卷积核得到的特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:输出就为32个feature map

多通道(比如RGB三通道)卷积过程



3、 多通道的多个卷积核

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取**函数值得到的。  所以最后得到两个feature map, 即输出层的卷积核核个数为 feature map 的个数。

多通道(比如RGB三通道)卷积过程

多通道(比如RGB三通道)卷积过程

所以,在上图由4个通道卷积得到2个通道的过程中,参数的数目为4×2×2×2个,其中4表示4个通道,第一个2表示生成2个通道,最后的2×2表示卷积核大小。


下面是常见模型, 理解一下 每层feature map 个数,为上一层卷积核的个数

下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。

多通道(比如RGB三通道)卷积过程

上图模型的基本参数为:

输入:224×224大小的图片,3通道
第一层卷积:5×5大小的卷积核96个,每个GPU上48个。
第一层max-pooling:2×2的核。
第二层卷积:3×3卷积核256个,每个GPU上128个。
第二层max-pooling:2×2的核。
第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
第五层卷积:3×3的卷积核256个,两个GPU上个128个。
第五层max-pooling:2×2的核。
第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
第二层全连接:4096维
Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

4 DeepID网络结构

DeepID网络结构是香港中文大学的Sun Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。

如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。

多通道(比如RGB三通道)卷积过程

上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。


引用:点击打开链接

1、 一通道单个卷积核卷积过程


2、 一通道 多个卷积核卷积过程

一个卷积核得到的特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:输出就为32个feature map

多通道(比如RGB三通道)卷积过程



3、 多通道的多个卷积核

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取**函数值得到的。  所以最后得到两个feature map, 即输出层的卷积核核个数为 feature map 的个数。

多通道(比如RGB三通道)卷积过程

多通道(比如RGB三通道)卷积过程

所以,在上图由4个通道卷积得到2个通道的过程中,参数的数目为4×2×2×2个,其中4表示4个通道,第一个2表示生成2个通道,最后的2×2表示卷积核大小。


下面是常见模型, 理解一下 每层feature map 个数,为上一层卷积核的个数

下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。

多通道(比如RGB三通道)卷积过程

上图模型的基本参数为:

输入:224×224大小的图片,3通道
第一层卷积:5×5大小的卷积核96个,每个GPU上48个。
第一层max-pooling:2×2的核。
第二层卷积:3×3卷积核256个,每个GPU上128个。
第二层max-pooling:2×2的核。
第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
第五层卷积:3×3的卷积核256个,两个GPU上个128个。
第五层max-pooling:2×2的核。
第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
第二层全连接:4096维
Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

4 DeepID网络结构

DeepID网络结构是香港中文大学的Sun Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。

如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。

多通道(比如RGB三通道)卷积过程

上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。


引用:点击打开链接