PBFT协议

PBFT协议

前提假设

  • 分布式节点通过网络是连接在一起的
  • 网络节点发送的消息可能会丢,可能会延迟到达,也可能会重复,到达顺序也可能是乱的

为什么至少要3f+1个节点

  • 最坏的情况是:f个节点是有问题的,由于到达顺序的问题,有可能f个有问题的节点比正常的f个节点先返回消息,又要保证收到的正常的节点比有问题的节点多,所以需要满足N-f-f>f => N>3f,所以至少3f+1个节点

术语

  • client:发出调用请求的实体
  • view:连续的编号
  • replica:网络节点
  • primary:主节点,负责生成消息***
  • backup:支撑节点
  • state:节点状态

3阶段协议

PBFT协议

从primary收到消息开始,每个消息都会有view的编号,每个节点都会检查是否和自己的view是相同的,代表是哪个节点发送出来的消息,源头在哪里,client收到消息也会检查该请求返回的所有消息是否是相同的view。如果过程中发现view不相同,消息就不会被处理。除了检查view之外,每个节点收到消息的时候都会检查对应的***n是否匹配,还会检查相同view和n的PRE-PREPARE、PREPARE消息是否匹配,从协议的连续性上提供了一定程度的安全。

每个节点收到其他节点发送的消息,能够验证其签名确认发送来源,但并不能确认发送节点是否伪造了消息,PBFT采用的办法就是数数,看有多少节点发送了相同的消息,在有问题的节点数有限的情况下,就能判断哪些节点发送的消息是真实的。REQUEST和PRE-PREPARE阶段还不涉及到消息的真实性,只是独立的生成或者确认view和***n,所以收到消息判断来源后就广播出去了。PREPARE阶段开始会汇总消息,通过数数判断消息的真实性。PREPARE消息是收到PRE-PREPARE消息的节点发送出来的,primary收到REQUEST消息后不会给自己发送PRE-PREPARE消息,也不会发送PRE-PREPARE消息,所以一个节点收到的消息数满足2f+1-1=2f个就能满足没问题的节点数比有问题节点多了(包括自身节点)。COMMIT阶段primary节点也会在收到PREPARE消息后发送COMMIT消息,所以收到的消息数满足2f+1个就能满足没问题的节点数比有问题节点多了(包括自身节点)。

PRE-PREPARE和PREPARE阶段保证了所有正常的节点对请求的处理顺序达成一致,它能够保证如果PREPARE(m, v, n, i) 是真的话,PREPARE(m’, v, n, j) 就一定是假的,其中j是任意一个正常节点的编号,只要D(m) != D(m’)。因为如果有3f+1个节点,至少有f+1个正常的节点发送了PRE-PREPARE和PREPARE消息,所以如果PREPARE(m’, v, n, j) 是真的话,这些节点中就至少有一个节点发了不同的PRE-PREPARE或者PREPARE消息,这和它是正常的节点不一致。当然,还有一个假设是安全强度是足够的,能够保证m != m’时,D(m) != D(m’)D(m) 是消息m的摘要。

确定好了每个请求的处理顺序,怎么能保证按照顺序执行呢?网络消息都是无序到达的,每个节点达成一致的顺序也是不一样的,有可能在某个节点上n比n-1先达成一致。其实每个节点都会把PRE-PREPARE、PREPARE和COMMIT消息缓存起来,它们都会有一个状态来标识现在处理的情况,然后再按顺序处理。而且***n在不同view中也是连续的,所以n-1处理完了,处理n就好了。

VIEW-CHANGE

PBFT协议

上图是发生VIEW-CHANGE的一种情况,就是节点正常收到PRE-PREPARE消息以后都会启动一个定时器,如果在设置的时间内都没有收到回复,就会触发VIEW-CHANGE,该节点就不会再接收除CHECKPOINT 、VIEW-CHANGE和NEW-VIEW等消息外的其他消息了。NEW-VIEW是由新一轮的primary节点发送的,O是不包含捎带的REQUEST的PRE-PREPARE消息集合,计算方法如下:

  • primary节点确定V中最新的稳定检查点***min-s和PRE-PREPARE消息中最大的***max-s
  • min-smax-s之间每个***n都生成一个PRE-PREPARE消息。这可能有两种情况:
    • P的VIEW-CHANGE消息中至少存在一个集合,***是n
    • 不存在上面的集合

    第一种情况,会生成新的PRE-PREPARE消息<PRE-PREPARE, v+1, nd>