使用scala的akka实现一个RPC通信的demo
-
目前大多数的分布式架构底层通信都是通过RPC实现的,RPC框架非常多,比如前我们学过的Hadoop项目的RPC通信框架,但是Hadoop在设计之初就是为了运行长达数小时的批量而设计的,在某些极端的情况下,任务提交的延迟很高,所有Hadoop的RPC显得有些笨重,Spark 的RPC是通过Akka类库实现的,Akka用Scala语言开发,基于Actor并发模型实现,Akka具有高可靠、高性能、可扩展等特点,使用Akka可以轻松实现分布式RPC功能。
-
Akka基于Actor模型,提供了一个用于构建可扩展的(Scalable)、弹性的(Resilient)、快速响应的(Responsive)应用程序的平台。
Actor模型:在计算机科学领域,Actor模型是一个并行计算(Concurrent Computation)模型,它把actor作为并行计算的基本元素来对待:为响应一个接收到的消息,一个actor能够自己做出一些决策,如创建更多的actor,或发送更多的消息,或者确定如何去响应接收到的下一个消息。
Actor是Akka中最核心的概念,它是一个封装了状态和行为的对象,Actor之间可以通过交换消息的方式进行通信,每个Actor都有自己的收件箱(Mailbox)。通过Actor能够简化锁及线程管理,可以非常容易地开发出正确地并发程序和并行系统,Actor具有如下特性:
1.提供了一种高级抽象,能够简化在并发(Concurrency)/并行(Parallelism)应用场景下的编程开发
2.提供了异步非阻塞的、高性能的事件驱动编程模型
3.超级轻量级事件处理(每GB堆内存几百万Actor)
-
架构图
- 重要类
4.1ActorSystem
在Akka中,ActorSystem是一个重量级的结构,他需要分配多个线程,所以在实际应用中,ActorSystem通常是一个单例 对象,我们可以使用这个ActorSystem创建很多Actor。
4.2Actor
在Akka中,Actor负责通信,在Actor中有一些重要的生命周期方法。
preStart()方法:该方法在Actor对象构造方法执行后执行,整个Actor生命周期中仅执行一次。
receive()方法:该方法在Actor的preStart方法执行完成后执行,用于接收消息,会被反复执行。
4.3 Master
package cn.maize.akka
import akka.actor.{Actor, ActorSystem, Props}
import com.typesafe.config.ConfigFactory
import scala.collection.mutable
import scala.concurrent.duration._
class Master(val host:String,val port:Int) extends Actor{
//保存WorkerID 到 WorkerInfo的映射
val idToWorkers = new mutable.HashMap[String,WorkerInfo]()
//保存所的WorkerInfo信息
val workers = new mutable.HashSet[WorkerInfo]()
val CHECK_INTERVAL = 10000
override def preStart(): Unit = {
//导入隐式转换
import context.dispatcher
context.system.scheduler.schedule(0 millis,CHECK_INTERVAL millis,self,CheckTimeOutWorker)
}
override def receive: Receive = {
//Worker发送个Master的注册消息
case RegisterWorker(workerId,cores,memory) => {
if(!idToWorkers.contains(workerId)){
//封装worker发送的信息
val workerInfo = new WorkerInfo(workerId,cores,memory)
//保存workerInfo
idToWorkers(workerId) = workerInfo
workers += workerInfo
//Master向Worker反馈注册成功的消息
sender ! RegisteredWorker(s"akka.tcp://${Master.MASTER_SYSTEM}@$host:$port/user/${Master.MASTER_NAME}")
}
}
//Worker发送给Master的心跳信息
case Heartbeat(workerId) => {
if(idToWorkers.contains(workerId)){
val workerInfo = idToWorkers(workerId)
//更新上一次心跳时间
workerInfo.lastHeartbeatTime = System.currentTimeMillis()
}
}
//检测超时的Worker
case CheckTimeOutWorker => {
val currentTime = System.currentTimeMillis()
val deadWorkers:mutable.HashSet[WorkerInfo] = workers.filter(w => currentTime - w.lastHeartbeatTime > CHECK_INTERVAL)
deadWorkers.foreach(w => {
idToWorkers -= w.id
workers -= w
})
println(currentTime + " alive worker size : "+workers.size)
}
}
}
object Master{
val MASTER_SYSTEM = "MasterActorSystem"
val MASTER_NAME = "master"
def main(args: Array[String]): Unit = {
val host = args(0)
val port = args(1).toInt
val confStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = "$host"
|akka.remote.netty.tcp.port = "$port"
""".stripMargin
val config = ConfigFactory.parseString(confStr)
//ActorSystem是单例的,用于创建Acotor并监控actor
val actorSystem = ActorSystem.create(MASTER_SYSTEM,config)
//通过ActorSystem创建Actor
val master = actorSystem.actorOf(Props(new Master(host,port)),MASTER_NAME)
actorSystem.awaitTermination()
}
}
4.4 Worker
package cn.maize.akka
import java.util.UUID
import akka.actor.{Actor, ActorSelection, ActorSystem, Props}
import com.typesafe.config.ConfigFactory
import scala.concurrent.duration._
class Worker(val cores:Int,val memory:Long,val masterHost:String,val masterPort:Int) extends Actor{
//Master的引用
var master :ActorSelection = _
//workerId
val workerId = UUID.randomUUID().toString
//masterUrl
var masterUrl:String = _
//心跳间隔
var HEARTBEAT_INTERVAL = 10000
//preStart在构造器之后receive之前执行
override def preStart(): Unit = {
//首先跟Master建立连接
master = context.actorSelection(s"akka.tcp://${Master.MASTER_SYSTEM}@${masterHost}:${masterPort}/user/${Master.MASTER_NAME}")
//通过master的引用向Master发送注册消息
master ! RegisterWorker(workerId,cores,memory)
}
override def receive: Receive = {
//Master发送给Worker注册成功的消息
case RegisteredWorker(masterUrl) => {
//以后Master会改造成分布式的,向master注册时由zookeeper分配,
//所以注册成功后需要拿到masterUrl以便后面传输数据
this.masterUrl = masterUrl
//启动定时任务,向Master发送心跳
//导入隐式转换
import context.dispatcher
context.system.scheduler.schedule(0 millis,HEARTBEAT_INTERVAL millis,self,SendHeartbeat)
}
case SendHeartbeat => {
//向Master发送心跳
master ! Heartbeat(workerId)
}
}
}
object Worker{
def main(args: Array[String]): Unit = {
//Worker的地址和端口
val host = args(0)
val port = args(1).toInt
val cores = args(2).toInt
val memory = args(3).toLong
//Master的地址和端口
val masterHost = args(4)
val masterPort = args(5).toInt
val confStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = "$host"
|akka.remote.netty.tcp.port = "$port"
""".stripMargin
val config = ConfigFactory.parseString(confStr)
//单例的ActorSystem
val actorSystem = ActorSystem.apply("WorkerActorSystem",config)
//通过actorSystem来创建Actor
val worker = actorSystem.actorOf(Props(new Worker(cores,memory,masterHost,masterPort)),"Worker")
actorSystem.awaitTermination()
}
}
4.5WorkerInfo
package cn.maize.akka
class WorkerInfo(val id:String,val cores:Int,var memory:Long) {
//最近一次的心跳时间
var lastHeartbeatTime:Long = _
}
4.6 Message
package cn.maize.akka
//进程间信息传送,实现scala的Serializable接口
trait Message extends Serializable
//Worker => Master
case class RegisterWorker(id:String,cores:Int,memery:Long) extends Message
//Master => Worker
case class RegisteredWorker(masterUrl:String) extends Message
//Worker => Master
case class Heartbeat(id:String) extends Message
//Worker internal message
case object SendHeartbeat
//Master internal message
case object CheckTimeOutWorker
4.7 pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.maize</groupId>
<artifactId>MyRPC</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.10.6</scala.version>
<scala.compat.version>2.10</scala.compat.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-actor_2.11</artifactId>
<version>2.3.16</version>
</dependency>
<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-remote_2.11</artifactId>
<version>2.3.16</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.8.2</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-make:transitive</arg>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>cn.maize.akka.Worker</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>