java核心知识——JVM

基本概念:what is JVM?

JVM (Java Virtual Machine),可运行 Java 代码的假想计算机 ,包括一套字节码指令集、一组寄存器、栈、堆 、一个垃圾回收和 一个存储方法域。

运行过程
我们都知道 Java 源文件,通过编译器,能够生产相应的.Class 文件,也就是字节码文件,
而字节码文件又通过 Java 虚拟机中的解释器,编译成特定机器上的机器码 。
也就是:
① Java 源文件—->编译器—->字节码文件
② 字节码文件—->JVM—->机器码
how to write once run everywhere?
每一种平台的解释器是不同的,但是实现的虚拟机是相同的,这也就是 Java 为什么能够
跨平台的原因了 ,当一个程序从开始运行,这时虚拟机就开始实例化了,多个程序启动就会
存在多个虚拟机实例。程序退出或者关闭,则虚拟机实例消亡,多个虚拟机实例之间数据不
能共享。

JVM内存区域-- 计算机的五脏六腑

java核心知识——JVM

JVM 内存区域主要分为线程私有区域【程序计数器、虚拟机栈、本地方法区】、线程共享区
域【JAVA 堆、方法区】、直接内存。
线程私有数据区域生命周期与线程相同, 依赖用户线程的启动/结束 而 创建/销毁(在 Hotspot
VM 内, 每个线程都与操作系统的本地线程直接映射, 因此这部分内存区域的存/否跟随本地线程的
生/死对应)。
程共享区域随虚拟机的启动/关闭而创建/销毁。
直接内存并不是 JVM 运行时数据区的一部分, 但也会被频繁的使用: 在 JDK 1.4 引入的 NIO 提
供了基于 Channel 与 Buffer 的 IO 方式, 它可以使用 Native 函数库直接分配堆外内存, 然后使用
DirectByteBuffer 对象作为这块内存的引用进行操作, 这样就避免了在 Java堆和 Native 堆中来回复制数据, 因此在一些场景中可以显著提高性能。

程序计数器(线程私有)

一块较小的内存空间, 是当前线程所执行的字节码的行号指示器,每条线程都要有一个独立的程序计数器,这类内存也称为“线程私有”的内存。
正在执行 java 方法的话,计数器记录的是虚拟机字节码指令的地址(当前指令的地址)。如
果还是 Native 方法,则为空。
这个内存区域是唯一一个在虚拟机中没有规定任何 OutOfMemoryError 情况的区域。

虚拟机栈(线程私有)

是描述java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧(Stack Frame)
用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成
的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。

栈帧( Frame)是用来存储数据和部分过程结果的数据结构,同时也被用来处理动态链接
(Dynamic Linking)、 方法返回值和异常分派( Dispatch Exception)。栈帧随着方法调用而创建,随着方法结束而销毁——无论方法是正常完成还是异常完成(抛出了在方法内未被捕获的异
常)都算作方法结束。

本地方法区(线程私有)

本地方法区和 Java Stack 作用类似, 区别是虚拟机栈为执行 Java 方法服务, 而本地方法栈则为
Native 方法服务。

堆(Heap-线程共享)-运行时数据区

是被线程共享的一块内存区域,创建的对象和数组都保存在 Java 堆内存中,也是垃圾收集器进行
垃圾收集的最重要的内存区域
。由于现代 VM 采用分代收集算法, 因此 Java 堆从 GC 的角度还可以
细分为: 新生代(Eden 区、From Survivor 区和 To Survivor 区)和老年代。

方法区/永久代(线程共享)

即我们常说的永久代(Permanent Generation), 用于存储被 JVM 加载的类信息、常量、静
态变量、即时编译器编译后的代码等数据。
HotSpot VM把GC分代收集扩展至方法区, 即使用Java
堆的永久代来实现方法区, 这样 HotSpot 的垃圾收集器就可以像管理 Java 堆一样管理这部分内存,
而不必为方法区开发专门的内存管理器(永久带的内存回收的主要目标是针对常量池的回收和类型
的卸载, 因此收益一般很小)。
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版
本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。 Java 虚拟机对 Class 文件的每一部分(自然也包括常量池)的格式都有严格的规定,每一个字节用于存储哪种数据都必须符合规范上的要求,这样才会被虚拟机认可、装载和执行。

JVM 运行时内存

Java 堆从 GC 的角度还可以细分为: 新生代(Eden 区、From Survivor 区和 To Survivor 区)和老年
代。

新生代

是用来存放新生的对象。一般占据堆的 1/3 空间。由于频繁创建对象,所以新生代会频繁触发
MinorGC 进行垃圾回收。新生代又分为 Eden 区、ServivorFrom、ServivorTo 三个区。

Eden 区

Java 新对象的出生地(如果新创建的对象占用内存很大,则直接分配到老
年代)。当 Eden 区内存不够的时候就会触发 MinorGC,对新生代区进行
一次垃圾回收。

ServivorFrom

上一次 GC 的幸存者,作为这一次 GC 的被扫。

ServivorTo

保留了一次 MinorGC 过程中的幸存者。

MinorGC 的过程

MinorGC 采用复制回收算法(复制->清空->互换)

1:eden、servicorFrom 复制到 ServicorTo,年龄+1

首先,把 Eden 和 ServivorFrom 区域中存活的对象复制到 ServicorTo 区域(如果有对象的年
龄以及达到了老年的标准,则赋值到老年代区),同时把这些对象的年龄+1(如果 ServicorTo 不
够位置了就放到老年区);

2:清空 eden、servicorFrom

然后,清空 Eden 和 ServicorFrom 中的对象;

3:ServicorTo 和 ServicorFrom 互换

最后,ServicorTo 和 ServicorFrom 互换,原 ServicorTo 成为下一次 GC 时的 ServicorFrom
区。

老年代

主要存放应用程序中生命周期长的内存对象。
老年代的对象比较稳定,所以 MajorGC 不会频繁执行。在进行 MajorGC 前一般都先进行
了一次 MinorGC,使得有新生代的对象晋身入老年代,导致空间不够用时才触发。当无法找到足
够大的连续空间分配给新创建的较大对象时也会提前触发一次 MajorGC 进行垃圾回收腾出空间。
** MajorGC 采用标记清除算法**:首先扫描一次所有老年代,标记出存活的对象,然后回收没
有标记的对象。MajorGC 的耗时比较长,因为要扫描再回收。MajorGC 会产生内存碎片,为了减
少内存损耗,我们一般需要进行合并或者标记出来方便下次直接分配。当老年代也满了装不下的
时候,就会抛出 OOM(Out of Memory)异常。

永久代

指内存的永久保存区域,主要存放 Class 和 Meta(元数据)的信息,Class 在被加载的时候被
放入永久区域,它和和存放实例的区域不同,GC 不会在主程序运行期对永久区域进行清理。所以这
也导致了永久代的区域会随着加载的 Class 的增多而胀满,最终抛出 OutOfMemoryError 。

JAVA8 与元数据

在 Java8 中,永久代已经被移除,被一个称为“元数据区”(元空间)的区域所取代。元空间
的本质和永久代类似,元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用
本地内存。因此,默认情况下,元空间的大小仅受本地内存限制。类的元数据放入 native
memory, 字符串池和类的静态变量放入 java 堆中
,这样可以加载多少类的元数据就不再由
MaxPermSize 控制, 而由系统的实际可用空间来控制。

垃圾回收与算法

如何确定垃圾

引用计数法

在 Java 中,引用和对象是有关联的。如果要操作对象则必须用引用进行。因此,很显然一个简单
的办法是通过引用计数来判断一个对象是否可以回收。简单说,即一个对象如果没有任何与之关
联的引用,即他们的引用计数都不为 0,则说明对象不太可能再被用到,那么这个对象就是可回收
对象。

可达性分析

为了解决引用计数法的循环引用问题,Java 使用了可达性分析的方法。通过一系列的“GC roots”
对象作为起点搜索。如果在“GC roots”和一个对象之间没有可达路径,则称该对象是不可达的。
要注意的是,不可达对象不等价于可回收对象,不可达对象变为可回收对象至少要经过两次标记
过程。两次标记后仍然是可回收对象,则将面临回收。

复制回收算法(copying)

为了解决 Mark-Sweep 算法内存碎片化的缺陷而被提出的算法。按内存容量将内存划分为等大小
的两块。每次只使用其中一块,当这一块内存满后将尚存活的对象复制到另一块上去,把已使用
的内存清掉,这种算法虽然实现简单,内存效率高,不易产生碎片,但是最大的问题是可用内存被压缩到了原本的一半。且存活对象增多的话,Copying 算法的效率会大大降低。java核心知识——JVM

标记清除算法(Mark-Sweep)

最基础的垃圾回收算法,分为两个阶段,标注和清除。标记阶段标记出所有需要回收的对象,清
除阶段回收被标记的对象所占用的空间。该算法最大的问题是内存碎片化严重,后续可能发生大对象不能找到可利用空间的问题。
java核心知识——JVM

标记整理算法(Mark-Compact)

结合了以上两个算法,为了避免缺陷而提出。标记阶段和 Mark-Sweep 算法相同,标记后不是清
理对象,而是将存活对象移向内存的一端。然后清除端边界外的对象。java核心知识——JVM

分代收集算法

分代收集法是目前大部分 JVM 所采用的方法,其核心思想是根据对象存活的不同生命周期将内存
划分为不同的域,一般情况下将 GC 堆划分为老生代(Tenured/Old Generation)和新生代(Young
Generation)。老生代的特点是每次垃圾回收时只有少量对象需要被回收,新生代的特点是每次垃
圾回收时都有大量垃圾需要被回收,因此可以根据不同区域选择不同的算法。

新生代与复制回收算法

目前大部分 JVM 的 GC 对于新生代都采取 Copying 算法,因为新生代中每次垃圾回收都要
回收大部分对象,即要复制的操作比较少,但通常并不是按照 1:1 来划分新生代。一般将新生代
划分为一块较大的 Eden 空间和两个较小的 Survivor 空间(From Space, To Space),每次使用
Eden 空间和其中的一块 Survivor 空间,当进行回收时,将该两块空间中还存活的对象复制到另
一块 Survivor 空间中。

老年代与标记整理算法

而老年代因为每次只回收少量对象,因而采用 Mark-Compact 算法。

  1. JAVA 虚拟机提到过的处于方法区的永生代(Permanet Generation),它用来存储 class 类,
    常量,方法描述等。对永生代的回收主要包括废弃常量和无用的类。
  2. 对象的内存分配主要在新生代的 Eden Space 和 Survivor Space 的 From Space(Survivor 目
    前存放对象的那一块),少数情况会直接分配到老生代。
  3. 当新生代的 Eden Space 和 From Space 空间不足时就会发生一次 GC,进行 GC 后,Eden
    Space 和 From Space 区的存活对象会被挪到 To Space,然后将 Eden Space 和 From
    Space 进行清理。
  4. 如果 To Space 无法足够存储某个对象,则将这个对象存储到老生代。
  5. 在进行 GC 后,使用的便是 Eden Space 和 To Space 了,如此反复循环。
  6. 当对象在 Survivor 区躲过一次 GC 后,其年龄就会+1。默认情况下年龄到达 15 的对象会被
    移到老生代中。

GC 垃圾收集器

Java 堆内存被划分为新生代和年老代两部分,新生代主要使用复制和标记-清除垃圾回收算法;
年老代主要使用标记-整理垃圾回收算法,因此 java 虚拟中针对新生代和年老代分别提供了多种不
同的垃圾收集器,JDK1.6 中 Sun HotSpot 虚拟机的垃圾收集器如下:
java核心知识——JVM

Serial 垃圾收集器(单线程、复制算法)

Serial(Serial:连续)是最基本垃圾收集器,使用复制算法,曾经是JDK1.3.1 之前新生代唯一的垃圾收集器。Serial 是一个单线程的收集器,它不但只会使用一个 CPU 或一条线程去完成垃圾收集工
作,并且在进行垃圾收集的同时,必须暂停其他所有的工作线程,直到垃圾收集结束。
Serial 垃圾收集器虽然在收集垃圾过程中需要暂停所有其他的工作线程,但是它简单高效,对于限
定单个 CPU 环境来说,没有线程交互的开销,可以获得最高的单线程垃圾收集效率,因此 Serial
垃圾收集器依然是 java 虚拟机运行在 Client 模式下默认的新生代垃圾收集器。

ParNew 垃圾收集器(Serial+多线程)

ParNew 垃圾收集器其实是 Serial 收集器的多线程版本,也使用复制算法,除了使用多线程进行垃圾收集之外,其余的行为和 Serial 收集器完全一样,ParNew 垃圾收集器在垃圾收集过程中同样也
要暂停所有其他的工作线程。
ParNew 收集器默认开启和 CPU 数目相同的线程数,可以通过-XX:ParallelGCThreads 参数来限
制垃圾收集器的线程数。【Parallel:平行的】
ParNew虽然是除了多线程外和Serial 收集器几乎完全一样,但是ParNew垃圾收集器是很多 java
虚拟机运行在 Server 模式下新生代的默认垃圾收集器。

Parallel Scavenge 收集器(多线程复制算法、高效)

Parallel Scavenge 收集器也是一个新生代垃圾收集器,同样使用复制算法,也是一个多线程的垃
圾收集器,它重点关注的是程序达到一个可控制的吞吐量(Thoughput,CPU 用于运行用户代码
的时间/CPU 总消耗时间,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)),
高吞吐量可以最高效率地利用 CPU 时间,尽快地完成程序的运算任务,主要适用于在后台运算而
不需要太多交互的任务。自适应调节策略也是 ParallelScavenge 收集器与 ParNew 收集器的一个
重要区别。

Serial Old 收集器(单线程标记整理算法 )

Serial Old 是 Serial 垃圾收集器年老代版本,它同样是个单线程的收集器,使用标记-整理算法,
这个收集器也主要是运行在 Client 默认的 java 虚拟机默认的年老代垃圾收集器。
在 Server 模式下,主要有两个用途:

  1. 在 JDK1.5 之前版本中与新生代的 Parallel Scavenge 收集器搭配使用。
  2. 作为年老代中使用 CMS 收集器的后备垃圾收集方案。

Parallel Old 收集器(多线程标记整理算法)

Parallel Old 收集器是Parallel Scavenge的年老代版本,使用多线程的标记-整理算法,在 JDK1.6
才开始提供。
在 JDK1.6 之前,新生代使用 ParallelScavenge 收集器只能搭配年老代的 Serial Old 收集器,只
能保证新生代的吞吐量优先,无法保证整体的吞吐量,Parallel Old 正是为了在年老代同样提供吞
吐量优先的垃圾收集器
,如果系统对吞吐量要求比较高,可以优先考虑新生代 Parallel Scavenge
和年老代 Parallel Old 收集器的搭配策略。

CMS 收集器(多线程标记清除算法)

Concurrent mark sweep(CMS)收集器是一种年老代垃圾收集器,其最主要目标是获取最短垃圾
回收停顿时间,和其他年老代使用标记-整理算法不同,它使用多线程的标记-清除算法。
最短的垃圾收集停顿时间可以为交互比较高的程序提高用户体验。
CMS 工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下 4 个阶段:

初始标记

只是标记一下 GC Roots 能直接关联的对象,速度很快,仍然需要暂停所有的工作线程。

并发标记

进行 GC Roots 跟踪的过程,和用户线程一起工作,不需要暂停工作线程。

重新标记

为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记
记录,仍然需要暂停所有的工作线程。

并发清除

清除 GC Roots 不可达对象,和用户线程一起工作,不需要暂停工作线程。由于耗时最长的并
发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看
CMS 收集器的内存回收和用户线程是一起并发地执行。

G1

Garbage first 垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与 CMS 收集器,G1 收
集器两个最突出的改进是:

  1. 基于标记-整理算法,不产生内存碎片。
  2. 可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。
    G1 收集器避免全区域垃圾收集,它把堆内存划分为大小固定的几个独立区域,并且跟踪这些区域
    的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间,优先回收垃圾
    最多的区域
    。区域划分和优先级区域回收机制,确保 G1 收集器可以在有限时间获得最高的垃圾收
    集效率。