初识hadoop

简介

  Hadoop分布式文件系统(Apsara File Storage for HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据

体系结构

  HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。其中NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作;集群中的DataNode管理存储的数据。

特点与目标

(1)简单一致性
  大部分的HDFS程序对文件操作需要的是一次写多次读取的操作模式。一个文件一旦创建、写入、关闭之后就不需要修改了。这个假定简单化了数据一致的问题,并使高吞吐量的数据访问变得可能。一个Map-Reduce程序或者网络爬虫程序都可以完美地适合这个模型。
(2)移动计算比移动数据更经济
  在靠近计算数据所存储的位置来进行计算是最理想的状态,尤其是在数据集特别巨大的时候。这样消除了网络的拥堵,提高了系统的整体吞吐量。一个假定就是迁移计算到离数据更近的位置比将数据移动到程序运行更近的位置要更好。HDFS提供了接口,来让程序将自己移动到离数据存储更近的位置。
(3)异构软硬件平台间的可移植性
  HDFS被设计成可以简便地实现平台间的迁移,这将推动需要大数据集的应用更广泛地采用HDFS作为平台。
(4)名字节点和数据节点
  HDFS是一个主从结构,一个HDFS集群是由一个名字节点,它是一个管理文件命名空间和调节客户端访问文件的主服务器,当然还有一些数据节点,通常是一个节点一个机器,它来管理对应节点的存储。HDFS对外开放文件命名空间并允许用户数据以文件形式存储
  内部机制是将一个文件分割成一个或多个块,这些块被存储在一组数据节点中。名字节点用来操作文件命名空间的文件或目录操作,如打开,关闭,重命名等等。它同时确定块与数据节点的映射。数据节点负责来自文件系统客户的读写请求。数据节点同时还要执行块的创建,删除,和来自名字节点的块复制指令。
初识hadoop
  名字节点和数据节点都是运行在普通的机器之上的软件,机器典型的都是GNU/Linux,HDFS是用java编写的,任何支持java的机器都可以运行名字节点或数据节点,利用java语言的超轻便性,很容易将HDFS部署到大范围的机器上。典型的部署是由一个专门的机器来运行名字节点软件,集群中的其他每台机器运行一个数据节点实例。 集群中只有一个名字节点极大地简单化了系统的体系结构。名字节点是仲裁者和所有HDFS元数据的仓库,用户的实际数据不经过名字节点。

HDFS设计原则

设计目标

  存储非常大的文件:这里非常大指的是几百M、G、或者TB级别。实际应用中已有很多集群存储的数据达到PB级别。Yahoo!的Hadoop集群约有10万颗CPU,运行在4万个机器节点上。.
  流式的数据访问方式: HDFS基于这样的一个假设:最有效的数据处理模式是一次写入、多次读取数据集经常从数据源生成或者拷贝一次,然后在其上做很多分析工作
  分析工作经常读取其中的大部分数据,即使不是全部。 因此读取整个数据集所需时间比读取第一条记录的延时更重要。
运行于商业硬件上: Hadoop不需要特别贵的、reliable的(可靠的)机器,可运行于普通商用机器(可以从多家供应商采购) ,商用机器不代表低端机器。在集群中(尤其是大的集群),节点失败率是比较高的HDFS的目标是确保集群在节点失败的时候不会让用户感觉到明显的中断。

可访问性编辑

  HDFS提供多种方式由应用程序访问,自然地,HDFS提供为程序提供**java api,**为c语言包装的java api也是可用的,还有一个HTTP浏览器可以浏览HDFS中的文件,通过WebDAV协议访问HDFS库的方式也正在构建中。

HDFS存储

HDFS核心概念

Blocks

  物理磁盘中有块的概念,磁盘的物理Block是磁盘操作最小的单元,读写操作均以Block为最小单元,一般为512 Byte。文件系统在物理Block之上抽象了另一层概念,文件系统Block物理磁盘Block的整数倍。通常为几KB。Hadoop提供的df、fsck这类运维工具都是在文件系统的Block级别上进行操作。
  HDFS的Block块比一般单机文件系统大得多,默认为128M。HDFS的文件被拆分成block-sized的chunk,chunk作为独立单元存储。比Block小的文件不会占用整个Block,只会占据实际大小。例如, 如果一个文件大小为1M,则在HDFS中只会占用1M的空间,而不是128M。
HDFS的Block为什么这么大?
  是为了最小化查找(seek)时间,控制定位文件与传输文件所用的时间比例。假设定位到Block所需的时间为10ms,磁盘传输速度为100M/s。如果要将定位到Block所用时间占传输时间的比例控制1%,则Block大小需要约100M。
但是如果Block设置过大,在MapReduce任务中,Map或者Reduce任务的个数 如果小于集群机器数量,会使得作业运行效率很低。
Block抽象的好处
block的拆分使得单个文件大小可以大于整个磁盘的容量,构成文件的Block可以分布在整个集群, 理论上,单个文件可以占据集群中所有机器的磁盘。 Block的抽象也简化了存储系统,对于Block,无需关注其权限,所有者等内容(这些内容都在文件级别上进行控制)。
Block作为容错和高可用机制中的副本单元,即以Block为单位进行复制。

Namenode & Datanode

  整个HDFS集群由NamenodeDatanode构成master-worker(主从)模式。Namenode负责构建命名空间,管理文件的元数据等,而Datanode负责实际存储数据,负责读写工作。

Namenode

  Namenode存放文件系统树及所有文件、目录的元数据。元数据持久化为2种形式:
namespcae image持久化数据中不包括Block所在的节点列表,及文件的Block分布在集群中的哪些节点上,这些信息是在系统重启的时候重新构建(通过Datanode汇报的Block信息)。 在HDFS中,Namenode可能成为集群的单点故障,Namenode不可用时,整个文件系统是不可用的。
HDFS针对单点故障提供了2种解决机制:
  1)备份持久化元数据 :将文件系统的元数据同时写到多个文件系统, 例如同时将元数据写到本地文件系统及NFS。这些备份操作都是同步的、原子的。
  2)Secondary Namenode :Secondary节点定期合并主Namenode的namespace image和edit log, 避免edit log过大,通过创建检查点checkpoint来合并。它会维护一个合并后的namespace image副本, 可用于在Namenode完全崩溃时恢复数据。

文件删除和恢复删除

  当一个文件被用户或程序删除时,它并没有立即从HDFS中删除。HDFS将它重新命名后转存到/trash目录下,这个文件只要还在/trash目录下保留就可以重新快速恢复。文件在/trash中存放的时间是可配置的。存储时间超时后,名字节点就将目标文件从名字空间中删除,同时此文件关联的所有文件块都将被释放。注意,用户删除文件的时间和HDF系统回收空闲存储之间的时间间隔是可以估计的。
删除一个文件之后,只要它还在/trash目录下,用户就可以恢复删除一个文件。如果一个用户希望恢复删除他已经删除的文件,可以查找/trash目录获得这个文件。/trash目录仅保存最新版本的删除文件。/trash目录也像其他目录一样,只有一个特殊的功能,HDFS采用一个特定的策略去自动地删除这个目录里的文件,当前默认的策略是删除在此目录存放超过6小时的文件。以后这个策略将由一个定义好的接口来配置。

  这是本人在工作中的一点小总结,希望能给大家带来一点帮助,谢谢观看!!!