二叉树,二叉查找树,平衡二叉树

前言

B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引。B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的。在讲B+树之前必须先了解二叉查找树、平衡二叉树(AVLTree)和平衡多路查找树(B-Tree),B+树即由这些树逐步优化而来。

二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,或者说在最后一层右边缺少连续若干节点,则此二叉树为完全二叉树,深度为k的完全二叉树,至少有2^(k-1)个叶子节点,至多有2^k-1个节点。

(一)二叉查找树

二叉树具有以下性质:左子树的键值小于根的键值,右子树的键值大于根的键值。如下图:
 

二叉树,二叉查找树,平衡二叉树

对该二叉树的节点进行查找发现深度为1的节点的查找次数为1,深度为2的查找次数为2,深度为n的节点的查找次数为n,因此其平均查找次数为 (1+2+2+3+3+3) / 6 = 2.3次,同时,二叉查找树可以任意地构造,同样是2,3,5,6,7,8这六个数字,也可以按照下图的方式来构造:

二叉树,二叉查找树,平衡二叉树

这棵二叉树的查询效率就低了。因此若想二叉树的查询效率尽可能高,需要这棵二叉树是平衡的,从而引出新的定义——平衡二叉树,或称AVL树

(二)平衡二叉树(AVL Tree)

平衡二叉树(AVL树)在符合二叉查找树的条件下,还满足任何节点的两个子树的高度最大差为1。下面的两张图片,左边是AVL树,它的任何节点的两个子树的高度差<=1;右边的不是AVL树,其根节点的左子树高度为3,而右子树高度为1; 
二叉树,二叉查找树,平衡二叉树

如果在AVL树中进行插入或删除节点,可能导致AVL树失去平衡,这种失去平衡的二叉树可以概括为四种姿态:LL(左左)、RR(右右)、LR(左右)、RL(右左)。它们的示意图如下: 
二叉树,二叉查找树,平衡二叉树

这四种失去平衡的姿态都有各自的定义: 
LL:LeftLeft,也称“左左”。插入或删除一个节点后,根节点的左孩子(Left Child)的左孩子(Left Child)还有非空节点,导致根节点的左子树高度比右子树高度高2,AVL树失去平衡。

RR:RightRight,也称“右右”。插入或删除一个节点后,根节点的右孩子(Right Child)的右孩子(Right Child)还有非空节点,导致根节点的右子树高度比左子树高度高2,AVL树失去平衡。

LR:LeftRight,也称“左右”。插入或删除一个节点后,根节点的左孩子(Left Child)的右孩子(Right Child)还有非空节点,导致根节点的左子树高度比右子树高度高2,AVL树失去平衡。

RL:RightLeft,也称“右左”。插入或删除一个节点后,根节点的右孩子(Right Child)的左孩子(Left Child)还有非空节点,导致根节点的右子树高度比左子树高度高2,AVL树失去平衡。

AVL树失去平衡之后,可以通过旋转使其恢复平衡。下面分别介绍四种失去平衡的情况下对应的旋转方法。

LL的旋转。LL失去平衡的情况下,可以通过一次旋转让AVL树恢复平衡。步骤如下:

  1. 将根节点的左孩子作为新根节点。
  2. 将新根节点的右孩子作为原根节点的左孩子。
  3. 将原根节点作为新根节点的右孩子。

LL旋转示意图如下: 
二叉树,二叉查找树,平衡二叉树

RR的旋转:RR失去平衡的情况下,旋转方法与LL旋转对称,步骤如下:

  1. 将根节点的右孩子作为新根节点。
  2. 将新根节点的左孩子作为原根节点的右孩子。
  3. 将原根节点作为新根节点的左孩子。

RR旋转示意图如下: 
二叉树,二叉查找树,平衡二叉树

LR的旋转:LR失去平衡的情况下,需要进行两次旋转,步骤如下:

  1. 围绕根节点的左孩子进行RR旋转。
  2. 围绕根节点进行LL旋转。

LR的旋转示意图如下: 
二叉树,二叉查找树,平衡二叉树

RL的旋转:RL失去平衡的情况下也需要进行两次旋转,旋转方法与LR旋转对称,步骤如下:

  1. 围绕根节点的右孩子进行LL旋转。
  2. 围绕根节点进行RR旋转。

RL的旋转示意图如下: 
二叉树,二叉查找树,平衡二叉树