使用scrapy再次爬取猫眼前100榜单电影!

前提:

记得去年5月份左右的时候写过一篇使用Requests方法来爬取猫眼榜单电影的文章,今天偶然翻到了这篇文章,又恰巧最近在学scrapy框架进行爬虫,于是决定饶有兴趣的使用scrapy框架再次进行爬取。

说明:

如图所示,这次爬取的猫眼榜单网页链接内容大致如下(图1-1),这次需要爬取的信息分别是电影名称、主演、上映时间、电影评分和电影图片链接,然后将获取的电影图片下载保存到本地,如图1-2所示。

使用scrapy再次爬取猫眼前100榜单电影!

                                                                                                                               图1-1

                               

使用scrapy再次爬取猫眼前100榜单电影!

 

                                                                                                                               图1-2 

爬虫解析:

1、首先使用谷歌浏览器打开网页,然后按下键盘“F12”进入开发者工具调试界面,选择左上角的箭头图标,然后鼠标移至一个电影名处,就可以定位到该元素源代码的具体位置,定位到元素的源代码之后,可以从源代码中读出改元素的属性,如图2-1所示: 

                                                          

使用scrapy再次爬取猫眼前100榜单电影!

                                                                                                                              图2-1

2、从上图可以看出,我们需要的信息隐藏在这个节点和属性值中,接下来就是如何获取到这些节点信息和属性值的问题,这里最简答的方法就是选择一个节点后,右击鼠标选择“Copy-Copy Xpath”,通过xpath方法来定位元素来获取信息。具体的xpath定位元素的使用方法,可自行百度进行学习。

代码:

spider文件

# -*- coding: utf-8 -*-
import scrapy
from maoyan.items import MaoyanItem
import urllib
 
class Top100Spider(scrapy.Spider):
    name = 'top_100'
    allowed_domains = ['trade.maoyan.com']
    start_urls = ['https://trade.maoyan.com/board/4']
 
    def parse(self, response):
        #pass
        dd_list = response.xpath('//dl[@class="board-wrapper"]/dd')
        for dd in dd_list:
            item = MaoyanItem()
            item['name'] = dd.xpath('./a/@title').extract_first()  #电影名称
            item['starring'] = dd.xpath('./div/div/div/p[2]/text()').extract_first() #电影主演
            if item['starring'] is not None:
                item['starring'] = item['starring'].strip()
            item['releasetime']  = dd.xpath('./div/div/div/p[3]/text()').extract_first() #电影上映时间
            #item['image'] = 'https://trade.maoyan.com/' + dd.xpath('./a/@href').extract_first() #电影图片
            score_one = dd.xpath('./div/div/div[2]/p/i[1]/text()').extract_first()  #评分前半部分
            score_two = dd.xpath('./div/div/div[2]/p/i[2]/text()').extract_first()    #评分后半部分
            item['score'] = score_one + score_two
            #print(item)
            url = 'https://trade.maoyan.com' + dd.xpath('./a/@href').extract_first() #电影详情页
 
            yield scrapy.Request(
                url,
                callback= self.parse_datail,
                meta= {'item':item}
            )
        #获取下一页网页信息
        next_page = response.xpath('//div[@class="pager-main"]/ul/li/a[contains(text(), "下一页")]/@href').extract_first()
 
        if next_page is not None:
            print('当前爬取的网页链接是:%s'%next_page)
            new_ilnk = urllib.parse.urljoin(response.url, next_page)
            yield scrapy.Request(
                new_ilnk,
                callback=self.parse,
            )
 
    def parse_datail(self,response):
        item = response.meta['item']
        item['image'] = response.xpath('//div[@class ="celeInfo-left"]/div/img/@src').extract_first() #获取图片链接
        yield item
        # print('当前获取的信息')
        # print(item)

  item.py代码

# -*- coding: utf-8 -*-
 
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
 
import scrapy
 
 
class MaoyanItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    #pass
    name = scrapy.Field()   #电影名
    starring  = scrapy.Field()  #主演
    releasetime = scrapy.Field()  #上映时间
    image  = scrapy.Field()  #电影图片链接
    score = scrapy.Field()   #电影评分
 

pipelines.py代码

# -*- coding: utf-8 -*-
 
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
 
from scrapy.pipelines.images import ImagesPipeline
import scrapy
from scrapy.exceptions import DropItem
 
 
# class MaoyanPipeline(object):
#     def process_item(self, item, spider):
#         return item
 
 
#使用ImagesPipeline进行图片下载
 
class MaoyanPipeline(ImagesPipeline):
 
    def get_media_requests(self, item, info):
        print('item-iamge是', item['image'])
        yield scrapy.Request(item['image'])
 
    def item_completed(self, results, item, info):
        image_paths = [x['path'] for ok, x in results if ok]
        if not image_paths:
            raise DropItem("Item contains no images")
        return item

settings.py代码

# -*- coding: utf-8 -*-
 
# Scrapy settings for maoyan project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html
import random
BOT_NAME = 'maoyan'
 
SPIDER_MODULES = ['maoyan.spiders']
NEWSPIDER_MODULE = 'maoyan.spiders'
 
 
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'maoyan (+http://www.yourdomain.com)'
 
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
 
USER_AGENTS_LIST = [
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
        "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
    ]
USER_AGENT = random.choice(USER_AGENTS_LIST)
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'en',
   # 'User-Agent':"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    'User-Agent':USER_AGENT
}
 
IMAGES_STORE = 'D:\\MaoYan'    #文件保存路径

总结:

以上就是使用scrapy进行爬取猫眼前100榜单电影的方法,方法不是很难,主要难点还是在使用xpath进行元素定位获取数据方面,最后电影爬取成功后,就是去慢慢欣赏的时候 了,哈哈,祝各位周末愉快!                

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

python免费学习资料以及群交流解答点击即可加入