大数据调试环境配置(3):IDEA外部链接spark调试环境配置
一、目的
在远程电脑的windows系统上,部署远程spark代码开发环境,从而提升效率。
二、环境
1.CDH5.15.2
2.scala2.11.8
三、实现步骤
1.新建scala项目
(1)依据模板建立maven项目
(2)输入项目关键名称
(3)选择本地maven仓库对应配置文件settings.xml
(4)填写项目名称,确认建立项目
(5)修改pom文件中scala对应版本为2.11.8
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>sparktest</groupId>
<artifactId>sparktest</artifactId>
<version>1.0-SNAPSHOT</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.8</scala.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.5</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<configuration>
<downloadSources>true</downloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
</additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
</classpathContainers>
</configuration>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>
等待项目相关依赖导入
2.创建scala代码:简单wordcount代码
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* spark Streaming 处理socket数据
*
* 使用nc测试nc -lk 6789
*/
object NetworkWordCount {
def main(args: Array[String]): Unit = {
val sparkConf=new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
/***
* 创建StreamingContext需要sparkConf和batch interval
*/
val ssc=new StreamingContext(sparkConf,Seconds(5))
val lines=ssc.socketTextStream("bigdata.ibeifeng.com",6789)
val result= lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
result.print()
ssc.start()
ssc.awaitTermination()
}
}
3.从CM中下载配置文件hive-site.xml以及log4j.properties文件到resources文件夹下
四、测试
1.开启spark
2.开启nc端口
nc -lk 6789
3.运行代码即可~