稀疏矩阵的快速转置
稀疏矩阵的快速转置
出处点击打开链接
关于稀疏矩阵的快速转置法,首先得明白其是通过对三元表进行转置。如果误以为是对矩阵进行转置,毫无疑问就算你想破脑袋也想不出个所以然,别陷入死胡同了!
对于一个三元表,行为i,列为j,值为v。需将其i与j的值对调才能得到新的三元表,但是如果直接进行转换,得到的新的三元表的顺序是混乱的,不符合三元表的规则。所以,课本首先介绍了一个用扫描来转置的算法(这个算法比较容易,在这里我就不说了),但是这个转置算法的时间复杂度太高,于是就有了接下来的快速转置算法。
要你对一个三元表进行步骤最少的转置,你可能会想,如果知道三元表中每一项在转置后的新的三元表中的位置,然后直接放进去,岂不是极大的缩小了时间复杂度?没错!快速转置法正是基于这种思想而设计的。
那么如何知道三元表中某一项的位置呢?在课本98页的a.data这个三元表可以看到,j为列号,在转置后即为新的三元表的行号,三元表正是按照行序进行排列的,而j=1有2个、j=2有2个、j=3有2个、j=4有1个、j=6有1个。根据这些数据按照从小到大排列,j=1的项在新的三元表中应占据第1、2位,j=2的项在新的三元表中应占据第3、4位,j=3的项在新的三元表中应占据第5、6位,j=4应占据第7位,j=6应占据第8位。
接下来就轻松多了,转置的时候直接从第一项读起,读取其j值,比如课本中a.data这个三元表的第一项的j值为2,因为j=2占据第3、4位,所以应该从第三位开始放,接下来如果读取的某一项的j值也是2,就放在第4位。因为j=2的项只有两个,所以第5位绝对不会被j=2的项占据,第5、6项本来就是留给j=3的。再比如当读到j=6的那项时,第8位是留给它的,就可以直接放进第8位了。这样,读取每一项,都能在三元表中找到相应的位置,这就是稀疏矩阵快速转置的原理。
当然,上面只是快速转置的原理,要实现它,就要设计算法来实现了。首先,我们需要两个变量。第一个num[col]用于记录原三元表中列数为col的项的数目,例如col=3时,num[col]=2;第二个cpot[col]用于记录原三元表中列数为col的项在新三元表中的首位置,例如col=3时,cpot[col]=5。你可以打开书本第99页,我想你现在应该是能看懂表5.1了吧。
接下来说一说快速转置算法的具体事项,在课本的100页代码如下: