linux内存管理(1)-基本概念

1. 虚拟地址、物理地址、逻辑地址、线性地址

 虚拟地址又叫线性地址。linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念。物理地址自不必提。内核的虚拟地址和物理地址,大部分只差一个线性偏移量。用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址。

2. DMA/HIGH_MEM/NROMAL 分区

在x86结构中,Linux内核虚拟地址空间划分0~3G为用户空间,3~4G为内核空间(注意,内核可以使用的线性地址只有1G)。内核虚拟空间(3G~4G)又划分为三种类型的区:
ZONE_DMA 3G之后起始的16MB
ZONE_NORMAL 16MB~896MB
ZONE_HIGHMEM 896MB ~1G

由于内核的虚拟和物理地址只差一个偏移量:物理地址 = 逻辑地址 – 0xC0000000。所以如果1G内核空间完全用来线性映射,显然物理内存也只能访问到1G区间,这显然是不合理的。HIGHMEM就是为了解决这个问题,专门开辟的一块不必线性映射,可以灵活定制映射,以便访问1G以上物理内存的区域。从网上扣来一图,

linux内存管理(1)-基本概念

高端内存的划分,又如下图,

linux内存管理(1)-基本概念

内核直接映射空间 PAGE_OFFSET~VMALLOC_START,kmalloc和__get_free_page()分配的是这里的页面。二者是借助slab分配器,直接分配物理页再转换为逻辑地址(物理地址连续)。适合分配小段内存。此区域 包含了内核镜像、物理页框表mem_map等资源。

内核动态映射空间 VMALLOC_START~VMALLOC_END,被vmalloc用到,可表示的空间大。

内核永久映射空间 PKMAP_BASE ~ FIXADDR_START,kmap

内核临时映射空间 FIXADDR_START~FIXADDR_TOP,kmap_atomic

3.伙伴算法

伙伴Buddy算法解决了外部碎片问题.内核在每个zone区管理着可用的页面,按2的幂级(order)大小排成链表队列,存放在free_area数组。

linux内存管理(1)-基本概念

4.slab分配器:解决内部碎片问题

内核通常依赖于对小对象的分配,它们会在系统生命周期内进行无数次分配。slab 缓存分配器通过对类似大小(远小于1page)的对象进行缓存而提供这种功能,从而避免了常见的内部碎片问题。此处暂贴一图,关于其原理,常见参考文献3。很显然,slab机制是基于buddy算法的,前者是对后者的细化。