一文了解Zookeeper
前言
一直想找时间 好好写一篇关于Zookeeper的博客,雨后的湖大 消除热夏的酷暑,空气变得清新,安静下来可以听到窗外的蛙声。于是乎 整理自己的一些笔记,写下一篇关于Zookeeper的博文。话不多说,干货送上~
Zookeeper概览
Zookeeper,中文名是动物园管理员。它是一个开源的分布式协调服务,ZooKeeper 框架最初是在“Yahoo!"上构建的,用于以简单而稳健的方式访问他们的应用程序。
后来,Apache ZooKeeper 成为 Hadoop,HBase 和其他分布式框架使用的有组织服务的标准。例如,Apache HBase 使用 ZooKeeper 跟踪分布式数据的状态。
ZooKeeper 的设计目标是将那些复杂且容易出错的分布式一致性服务封装起来,构成一个高效可靠的原语集,并以一系列简单易用的接口提供给用户使用。
原语: 操作系统或计算机网络用语范畴。它是由若干条指令组成的,用于完成一定功能的一个过程。具有不可分割性,即原语的执行必须是连续的,在执行过程中不允许被中断。
ZooKeeper 是一个典型的分布式数据一致性解决方案,他实现的功能有:
1.命名服务 2.配置管理 3.集群管理 4.分布式锁 5.队列管理
(后续会对这几个方面做详细展开~)
Zookeeper基本概念
1. Zookeeper的角色
首先讲解一下Zookeeper集群中每个server所承担的角色,它们是以下三种中的一种:
(1)leader
一个Zookeeper集群同一时间只会有一个实际工作的Leader,它会发起并维护与各Follwer及Observer间的心跳。
(2)follower
- 一个Zookeeper集群可能同时存在多个Follower,它会响应Leader的心跳,
- Follower可直接处理并返回客户端的读请求,同时会将写请求转发给Leader处理,
- 并且负责在Leader处理写请求时对请求进行投票。
(3)observer
角色与Follower类似,但是无投票权。为了支持更多的客户端,需要增加更多Server;Server增多,投票阶段延迟增大,影响性能;引入Observer,Observer不参与投票; Observers接受客户端的连接,并将写请求转发给leader节点; 加入更多Observer节点,提高伸缩性,同时不影响吞吐率。
工作流程如下图所示:
总结概括三者的关系,如下图所示:
2. 会话(Session)
Session 指的是 ZooKeeper 服务器与客户端会话。在 ZooKeeper 中,一个客户端连接是指客户端和服务器之间的一个 TCP 长连接。
客户端启动的时候,首先会与服务器建立一个 TCP 连接,从第一次连接建立开始,客户端会话的生命周期也开始了。
通过这个连接,客户端能够通过心跳检测与服务器保持有效的会话,也能够向 Zookeeper 服务器发送请求并接受响应,同时还能够通过该连接接收来自服务器的 Watch 事件通知。
Session 的 sessionTimeout 值用来设置一个客户端会话的超时时间。
当由于服务器压力太大、网络故障或是客户端主动断开连接等各种原因导致客户端连接断开时,只要在 sessionTimeout 规定的时间内能够重新连接上集群中任意一台服务器,那么之前创建的会话仍然有效。
在为客户端创建会话之前,服务端首先会为每个客户端都分配一个 sessionID。
由于 sessionID 是 Zookeeper 会话的一个重要标识,许多与会话相关的运行机制都是基于这个 sessionID 的。
因此,无论是哪台服务器为客户端分配的 sessionID,都务必保证全局唯一。
3. Znode
在谈到分布式的时候,我们通常说的“节点"是指组成集群的每一台机器。
然而,在 ZooKeeper 中,“节点"分为两类:
- 第一类同样是指构成集群的机器,我们称之为机器节点。
- 第二类则是指数据模型中的数据单元,我们称之为数据节点一ZNode。
ZooKeeper 将所有数据存储在内存中,数据模型是一棵树(Znode Tree),由斜杠(/)的进行分割的路径,就是一个 Znode,例如/foo/path1。每个上都会保存自己的数据内容,同时还会保存一系列属性信息。
每个子目录项如 NameService 都被称作为znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于**znode是可以存储数据的**。
有四种类型的znode:
1、PERSISTENT-持久化目录节点
客户端与zookeeper断开连接后,该节点依旧存在
2、PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点
客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号
3、EPHEMERAL-临时目录节点
客户端与zookeeper断开连接后,该节点被删除
4、EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点
客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号
4. 版本
在前面我们已经提到,Zookeeper 的每个 ZNode 上都会存储数据,对应于每个 ZNode,Zookeeper 都会为其维护一个叫作 Stat 的数据结构。
Stat 中记录了这个 ZNode 的三个数据版本,分别是:
- version(当前 ZNode 的版本)
- cversion(当前 ZNode 子节点的版本)
- aversion(当前 ZNode 的 ACL 版本)
5. Watcher
Watcher(事件监听器),是 ZooKeeper 中的一个很重要的特性。
ZooKeeper 允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知到感兴趣的客户端上去,该机制是 ZooKeeper 实现分布式协调服务的重要特性。
最后总结一下zookeeper中一些重要概念:
- ZooKeeper 本身就是一个分布式程序(只要半数以上节点存活,ZooKeeper 就能正常服务)。
- 为了保证高可用,最好是以集群形态来部署 ZooKeeper,这样只要集群中大部分机器是可用的(能够容忍一定的机器故障),那么 ZooKeeper 本身仍然是可用的。
- ZooKeeper 将数据保存在内存中,这也就保证了 高吞吐量和低延迟(但是内存限制了能够存储的容量不太大,此限制也是保持 Znode 中存储的数据量较小的进一步原因)。
- ZooKeeper 是高性能的。在“读”多于“写”的应用程序中尤其地高性能,因为“写”会导致所有的服务器间同步状态。(“读”多于“写”是协调服务的典型场景。)
- ZooKeeper 有临时节点的概念。当创建临时节点的客户端会话一直保持活动,瞬时节点就一直存在。而当会话终结时,瞬时节点被删除。持久节点是指一旦这个 ZNode 被创建了,除非主动进行 ZNode 的移除操作,否则这个 ZNode 将一直保存在 Zookeeper 上。
- ZooKeeper 底层其实只提供了两个功能:①管理(存储、读取)用户程序提交的数据;②为用户程序提交数据节点监听服务。
ZAB 协议 & Paxos 算法
Paxos 算法可以说是 ZooKeeper 的灵魂了。但是,ZooKeeper 并没有完全采用 Paxos 算法 ,而是使用 ZAB 协议作为其保证数据一致性的核心算法。
另外,在 ZooKeeper 的官方文档中也指出,ZAB 协议并不像 Paxos 算法那样,是一种通用的分布式一致性算法,它是一种特别为 ZooKeeper 设计的崩溃可恢复的原子消息广播算法。
ZAB 协议介绍
Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。
ZAB(ZooKeeper Atomic Broadcast 原子广播)协议是为分布式协调服务 ZooKeeper 专门设计的一种支持崩溃恢复的原子广播协议。
在 ZooKeeper 中,主要依赖 ZAB 协议来实现分布式数据一致性,基于该协议,ZooKeeper 实现了一种主备模式的系统架构来保持集群中各个副本之间的数据一致性。
事务编号 Zxid(事务请求计数器+ epoch)
在 ZAB ( ZooKeeper Atomic Broadcast , ZooKeeper 原子消息广播协议) 协议的事务编号 Zxid 设计中,Zxid 是一个 64 位的数字,其中低 32 位是一个简单的单调递增的计数器,针对客户端每一个事务请求,计数器加 1;而高 32 位则代表 Leader 周期 epoch 的编号,每个当选产生一个新的 Leader 服务器,就会从这个 Leader 服务器上取出其本地日志中最大事务的ZXID,并从中读取 epoch 值,然后加 1,以此作为新的 epoch,并将低 32 位从 0 开始计数。
Zxid(Transaction id)类似于RDBMS中的事务ID,用于标识一次更新操作的Proposal(提议) ID。为了保证顺序性,该zkid必须单调递增。
epoch:可以理解为当前集群所处的年代或者周期,每个 leader 就像皇帝,都有自己的年号,所以每次改朝换代,leader 变更之后,都会在前一个年代的基础上加 1。这样就算旧的 leader 崩溃恢复之后,也没有人听他的了,因为 follower 只听从当前年代的 leader 的命令。
ZAB 协议包括两种基本的模式,分别是崩溃恢复和消息广播。
- 当整个服务框架在启动过程中,或是当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,ZAB 协议就会进入恢复模式并选举产生新的 Leader 服务器。
- 当选举产生了新的 Leader 服务器,同时集群中已经有过半的机器与该 Leader 服务器完成了状态同步之后,ZAB 协议就会退出恢复模式。
其中,所谓的状态同步是指数据同步,用来保证集群中存在过半的机器能够和 Leader 服务器的数据状态保持一致。 - 当集群中已经有过半的 Follower 服务器完成了和 Leader 服务器的状态同步,那么整个服务框架就可以进人消息广播模式了。
- 当一台同样遵守 ZAB 协议的服务器启动后加入到集群中时,如果此时集群中已经存在一个 Leader 服务器在负责进行消息广播。
- 那么新加入的服务器就会自觉地进人数据恢复模式:找到 Leader 所在的服务器,并与其进行数据同步,然后一起参与到消息广播流程中去。
正如上文介绍中所说的,ZooKeeper 设计成只允许唯一的一个 Leader 服务器来进行事务请求的处理。
Leader 服务器在接收到客户端的事务请求后,会生成对应的事务提案并发起一轮广播协议。
而如果集群中的其他机器接收到客户端的事务请求,那么这些非 Leader 服务器会首先将这个事务请求转发给 Leader 服务器。
Zookeeper 下 Server工作状态
每个Server在工作过程中有三种状态:
- LOOKING:当前Server不知道leader是谁,正在搜寻
- LEADING:当前Server即为选举出来的leader
- FOLLOWING:leader已经选举出来,当前Server与之同步
Zookeeper选主流程
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。
每个server首先给自己投票,然后用自己的选票和其他server选票对比,权重大的胜出,使用权重较大的更新自身选票箱。具体选举过程如下:
- 每个Server启动以后都询问其它的Server它要投票给谁。对于其他server的询问,server每次根据自己的状态都回复自己推荐的leader的id和上一次处理事务的zxid(系统启动时每个server都会推荐自己)
- 收到所有Server回复以后,就计算出zxid最大的哪个Server,并将这个Server相关信息设置成下一次要投票的Server。
- 计算这过程中获得票数最多的的sever为获胜者,如果获胜者的票数超过半数,则改server被选为leader。否则,继续这个过程,直到leader被选举出来
- leader就会开始等待server连接
- Follower连接leader,将最大的zxid发送给leader
- Leader根据follower的zxid确定同步点,至此选举阶段完成。
- 选举阶段完成Leader同步后通知follower 已经成为uptodate状态
- Follower收到uptodate消息后,又可以重新接受client的请求进行服务了
举例,目前有5台服务器,每台服务器均没有数据,它们的编号分别是1,2,3,4,5,按编号依次启动,它们的选择举过程如下:
- 服务器1启动,给自己投票,然后发投票信息,由于其它机器还没有启动所以它收不到反馈信息,服务器1的状态一直属于Looking。
- 服务器2启动,给自己投票,同时与之前启动的服务器1交换结果,由于服务器2的编号大所以服务器2胜出,但此时投票数没有大于半数(服务器2的票数是2 大于半数至少是3),所以两个服务器的状态依然是LOOKING。
- 服务器3启动,给自己投票,同时与之前启动的服务器1,2交换信息,由于服务器3的编号最大所以服务器3胜出,此时投票数正好大于半数(服务器3的票数是3),所以服务器3成为领导者,服务器1,2成为小弟。
- 服务器4启动,给自己投票,同时与之前启动的服务器1,2,3交换信息,尽管服务器4的编号大,但之前服务器3已经胜出,所以服务器4只能成为小弟。
- 服务器5启动,后面的逻辑同服务器4成为小弟。
Zookeeper特点
- 顺序一致性:从同一客户端发起的事务请求,最终将会严格地按照顺序被应用到 ZooKeeper 中去。
- 原子性:所有事务请求的处理结果在整个集群中所有机器上的应用情况是一致的,也就是说,要么整个集群中所有的机器都成功应用了某一个事务,要么都没有应用。
- 单一系统映像:无论客户端连到哪一个 ZooKeeper 服务器上,其看到的服务端数据模型都是一致的。
- 可靠性:一旦一次更改请求被应用,更改的结果就会被持久化,直到被下一次更改覆盖。
Zookeeper的功能(重要!!)
1. 命名服务
在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现。
2. Zookeeper的配置管理
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。现在把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好
3. Zookeeper集群管理
所谓集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它上船了。
新机器加入也是类似,所有机器收到通知:新兄弟目录加入,highcount又有了,对于第二点,我们稍微改变一下,所有机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。
4. 分布式锁
这部分内容比较重要 在面试中属于高频考点,南国在之前的博客分布式锁入门及常见实现方式介绍讲述过。
5. Zookeeper队列管理
两种类型的队列:
1、同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。
2、队列按照 FIFO 方式进行入队和出队操作。
第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。
第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
6. 数据复制
Zookeeper作为一个集群提供一致的数据服务,自然,它要在所有机器间做数据复制。数据复制的好处:
1、容错:一个节点出错,不致于让整个系统停止工作,别的节点可以接管它的工作;
2、提高系统的扩展能力 :把负载分布到多个节点上,或者增加节点来提高系统的负载能力;
3、提高性能:让客户端本地访问就近的节点,提高用户访问速度。
从客户端读写访问的透明度来看,数据复制集群系统分下面两种:
1、写主(WriteMaster) :对数据的修改提交给指定的节点。读无此限制,可以读取任何一个节点。这种情况下客户端需要对读与写进行区别,俗称读写分离;
2、写任意(Write Any):对数据的修改可提交给任意的节点,跟读一样。这种情况下,客户端对集群节点的角色与变化透明。
对zookeeper来说,它采用的方式是写任意。通过增加机器,它的读吞吐能力和响应能力扩展性非常好,而写,随着机器的增多吞吐能力肯定下降(这也是它建立observer的原因),而响应能力则取决于具体实现方式,是延迟复制保持最终一致性,还是立即复制快速响应。
参考资料:
1.http://developer.51cto.com/art/201809/583184.htm
2.https://www.cnblogs.com/felixzh/p/5869212.html