学习笔记(03):英特尔®OpenVINO™工具套件中级课程--(第三章)模型优化器调优
立即学习:https://edu.****.net/course/play/28807/427187?utm_source=blogtoedu
OpenVINO Toolkits
模型优化器
mo.py是离线工具,为了提高性能,无关精度,有许多选项。
- 将TF/Caffe/Mxnet/ONNX转化为IR格式
- Map to supported libraray calls/kernels/layers
- 多种选项(预处理),如改变RGB通道顺序,去掉均值等
- 优化网络,合并网络结构
- 改变数据类型,FP32,FP16,INT8
- 切掉部分网络
- 支持自定义层
使用帮助
usage: mo.py [options]
optional arguments:
-h, --help show this help message and exit
--framework {tf,caffe,mxnet,kaldi,onnx}
Name of the framework used to train the input model.
Framework-agnostic parameters:
--input_model INPUT_MODEL, -w INPUT_MODEL, -m INPUT_MODEL
Tensorflow*: a file with a pre-trained model (binary
or text .pb file after freezing). Caffe*: a model
proto file with model weights
--model_name MODEL_NAME, -n MODEL_NAME
Model_name parameter passed to the final create_ir
transform. This parameter is used to name a network in
a generated IR and output .xml/.bin files.
--output_dir OUTPUT_DIR, -o OUTPUT_DIR
Directory that stores the generated IR. By default, it
is the directory from where the Model Optimizer is
launched.
--input_shape INPUT_SHAPE
Input shape(s) that should be fed to an input node(s)
of the model. Shape is defined as a comma-separated
list of integer numbers enclosed in parentheses or
square brackets, for example [1,3,227,227] or
(1,227,227,3), where the order of dimensions depends
on the framework input layout of the model. For
example, [N,C,H,W] is used for Caffe* models and
[N,H,W,C] for TensorFlow* models. Model Optimizer
performs necessary transformations to convert the
shape to the layout required by Inference Engine
(N,C,H,W). The shape should not contain undefined
dimensions (? or -1) and should fit the dimensions
defined in the input operation of the graph. If there
are multiple inputs in the model, --input_shape should
contain definition of shape for each input separated
by a comma, for example: [1,3,227,227],[2,4] for a
model with two inputs with 4D and 2D shapes.
Alternatively, you can specify shapes with the --input
option.
--scale SCALE, -s SCALE
All input values coming from original network inputs
will be divided by this value. When a list of inputs
is overridden by the --input parameter, this scale is
not applied for any input that does not match with the
original input of the model.
--reverse_input_channels
Switch the input channels order from RGB to BGR (or
vice versa). Applied to original inputs of the model
if and only if a number of channels equals 3. Applied
after application of --mean_values and --scale_values
options, so numbers in --mean_values and
--scale_values go in the order of channels used in the
original model.
--log_level {CRITICAL,ERROR,WARN,WARNING,INFO,DEBUG,NOTSET}
Logger level
--input INPUT Quoted list of comma-separated input nodes names with
shapes, data types, and values for freezing. The shape
and value are specified as space-separated lists. The
data type of input node is specified in braces and can
have one of the values: f64 (float64), f32 (float32),
f16 (float16), i64 (int64), i32 (int32), u8 (uint8),
boolean. For example, use the following format to set
input port 0 of the node `node_name1` with the shape
[3 4] as an input node and freeze output port 1 of the
node `node_name2` with the value [20 15] of int32
typeand the shape [2]: "0:node_name1[3
4],node_name2:1[2]{i32}->[20 15]".
--output OUTPUT The name of the output operation of the model. For
TensorFlow*, do not add :0 to this name.
--mean_values MEAN_VALUES, -ms MEAN_VALUES
Mean values to be used for the input image per
channel. Values to be provided in the (R,G,B) or
[R,G,B] format. Can be defined for desired input of
the model, for example: "--mean_values
data[255,255,255],info[255,255,255]". The exact
meaning and order of channels depend on how the
original model was trained.
--scale_values SCALE_VALUES
Scale values to be used for the input image per
channel. Values are provided in the (R,G,B) or [R,G,B]
format. Can be defined for desired input of the model,
for example: "--scale_values
data[255,255,255],info[255,255,255]". The exact
meaning and order of channels depend on how the
original model was trained.
--data_type {FP16,FP32,half,float}
Data type for all intermediate tensors and weights. If
original model is in FP32 and --data_type=FP16 is
specified, all model weights and biases are quantized
to FP16.
--disable_fusing Turn off fusing of linear operations to Convolution
--disable_resnet_optimization
Turn off resnet optimization
--finegrain_fusing FINEGRAIN_FUSING
Regex for layers/operations that won't be fused.
Example: --finegrain_fusing Convolution1,.*Scale.*
--disable_gfusing Turn off fusing of grouped convolutions
--enable_concat_optimization
Turn on concat optimization
--move_to_preprocess Move mean values to IR preprocess section
--extensions EXTENSIONS
Directory or a comma separated list of directories
with extensions. To disable all extensions including
those that are placed at the default location, pass an
empty string.
--batch BATCH, -b BATCH
Input batch size
--version Version of Model Optimizer
--silent Prevent any output messages except those that
correspond to log level equals ERROR, that can be set
with the following option: --log_level. By default,
log level is already ERROR.
--freeze_placeholder_with_value FREEZE_PLACEHOLDER_WITH_VALUE
Replaces input layer with constant node with provided
value, for example: "node_name->True". It will be
DEPRECATED in future releases. Use --input option to
specify a value for freezing.
--generate_deprecated_IR_V7
Force to generate old deprecated IR V7 with layers
from old IR specification.
--keep_shape_ops [ Experimental feature ] Enables `Shape` operation
with all children keeping. This feature makes model
reshapable in Inference Engine
--disable_weights_compression
Disable compression and store weights with original
precision
--progress Enables model conversion progress display
--stream_output Switches model conversion progress display to a
multiline mode
--transformations_config TRANSFORMATIONS_CONFIG
Use the configuration file with transformations
description.
TensorFlow*-specific parameters:
--input_model_is_text
TensorFlow*: treat the input model file as a text
protobuf format. If not specified, the Model Optimizer
treats it as a binary file by default.
--input_checkpoint INPUT_CHECKPOINT
TensorFlow*: variables file to load.
--input_meta_graph INPUT_META_GRAPH
Tensorflow*: a file with a meta-graph of the model
before freezing
--saved_model_dir SAVED_MODEL_DIR
TensorFlow*: directory representing non frozen model
--saved_model_tags SAVED_MODEL_TAGS
Group of tag(s) of the MetaGraphDef to load, in string
format, separated by ','. For tag-set contains
multiple tags, all tags must be passed in.
--tensorflow_custom_operations_config_update TENSORFLOW_CUSTOM_OPERATIONS_CONFIG_UPDATE
TensorFlow*: update the configuration file with node
name patterns with input/output nodes information.
--tensorflow_use_custom_operations_config TENSORFLOW_USE_CUSTOM_OPERATIONS_CONFIG
Use the configuration file with custom operation
description.
--tensorflow_object_detection_api_pipeline_config TENSORFLOW_OBJECT_DETECTION_API_PIPELINE_CONFIG
TensorFlow*: path to the pipeline configuration file
used to generate model created with help of Object
Detection API.
--tensorboard_logdir TENSORBOARD_LOGDIR
TensorFlow*: dump the input graph to a given directory
that should be used with TensorBoard.
--tensorflow_custom_layer_libraries TENSORFLOW_CUSTOM_LAYER_LIBRARIES
TensorFlow*: comma separated list of shared libraries
with TensorFlow* custom operations implementation.
--disable_nhwc_to_nchw
Disables default translation from NHWC to NCHW
Caffe*-specific parameters:
--input_proto INPUT_PROTO, -d INPUT_PROTO
Deploy-ready prototxt file that contains a topology
structure and layer attributes
--caffe_parser_path CAFFE_PARSER_PATH
Path to Python Caffe* parser generated from
caffe.proto
-k K Path to CustomLayersMapping.xml to register custom
layers
--mean_file MEAN_FILE, -mf MEAN_FILE
Mean image to be used for the input. Should be a
binaryproto file
--mean_file_offsets MEAN_FILE_OFFSETS, -mo MEAN_FILE_OFFSETS
Mean image offsets to be used for the input
binaryproto file. When the mean image is bigger than
the expected input, it is cropped. By default, centers
of the input image and the mean image are the same and
the mean image is cropped by dimensions of the input
image. The format to pass this option is the
following: "-mo (x,y)". In this case, the mean file is
cropped by dimensions of the input image with offset
(x,y) from the upper left corner of the mean image
--disable_omitting_optional
Disable omitting optional attributes to be used for
custom layers. Use this option if you want to transfer
all attributes of a custom layer to IR. Default
behavior is to transfer the attributes with default
values and the attributes defined by the user to IR.
--enable_flattening_nested_params
Enable flattening optional params to be used for
custom layers. Use this option if you want to transfer
attributes of a custom layer to IR with flattened
nested parameters. Default behavior is to transfer the
attributes without flattening nested parameters.
Mxnet-specific parameters:
--input_symbol INPUT_SYMBOL
Symbol file (for example, model-symbol.json) that
contains a topology structure and layer attributes
--nd_prefix_name ND_PREFIX_NAME
Prefix name for args.nd and argx.nd files.
--pretrained_model_name PRETRAINED_MODEL_NAME
Name of a pretrained MXNet model without extension and
epoch number. This model will be merged with args.nd
and argx.nd files
--save_params_from_nd
Enable saving built parameters file from .nd files
--legacy_mxnet_model Enable MXNet loader to make a model compatible with
the latest MXNet version. Use only if your model was
trained with MXNet version lower than 1.0.0
--enable_ssd_gluoncv Enable pattern matchers replacers for converting
gluoncv ssd topologies.
Kaldi-specific parameters:
--counts COUNTS Path to the counts file
--remove_output_softmax
Removes the SoftMax layer that is the output layer
--remove_memory Removes the Memory layer and use additional inputs
outputs instead
使用实例
使用如下参数进行模型转换:
mo.py --input_model mobilenetv2-7.onnx --mean_values=data[123.675,116.28,103.53] --scale_values=data[58.624,57.12,57.375] --reverse_input_channels -o $lab_dir
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /home/dc2-user/****200/03/exercise-1/mobilenetv2-7.onnx
- Path for generated IR: /home/dc2-user/****200/03/exercise-1/
- IR output name: mobilenetv2-7
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: data[123.675,116.28,103.53]
- Scale values: data[58.624,57.12,57.375]
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: True
ONNX specific parameters:
Model Optimizer version:
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/dc2-user/****200/03/exercise-1/mobilenetv2-7.xml
[ SUCCESS ] BIN file: /home/dc2-user/****200/03/exercise-1/mobilenetv2-7.bin
[ SUCCESS ] Total execution time: 22.76 seconds.
[ SUCCESS ] Memory consumed: 160 MB.
It's been a while, check for a new version of Intel(R) Distribution of OpenVINO(TM) toolkit here https://software.intel.com/en-us/openvino-toolkit/choose-download?cid=&source=upgrade&content=2020_3_LTS or on the GitHub*
应用于分类使用方法
python3 classification_sample.py -m mobilenetv2-7.xml --labels labels.txt -i images/2.jpeg
[ INFO ] Creating Inference Engine
[ INFO ] Loading network files:
mobilenetv2-7.xml
mobilenetv2-7.bin
[ INFO ] Preparing input blobs
[ WARNING ] Image images/2.jpeg is resized from (454, 500) to (224, 224)
[ INFO ] Batch size is 1
[ INFO ] Loading model to the plugin
[ INFO ] Starting inference in synchronous mode
[ INFO ] Processing output blob
[ INFO ] Top 10 results:
Image images/2.jpeg
classid probability
------- -----------
Cardigan Welsh corgi 16.9098377
hound, Walker foxhound 15.7053862
beagle 15.6501904
Bernard, St Bernard 15.2576942
Swiss Mountain dog 14.2999191
foxhound 14.2940111
Appenzeller 13.7427340
Pembroke Welsh corgi 12.8577442
EntleBucher 12.7613630
collie 12.4419489
实验二、mo带参数例子input_shape [1,300,300,3]
mo.py --input_model public/ssd_mobilenet_v2_coco/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb --reverse_input_channels --input_shape [1,300,300,3] --input=image_tensor --transformations_config=$mo_dir/extensions/front/tf/ssd_v2_support.json --tensorflow_object_detection_api_pipeline_config=public/ssd_mobilenet_v2_coco/ssd_mobilenet_v2_coco_2018_03_29/pipeline.config --output=detection_classes,detection_scores,detection_boxes,num_detections --model_name ssd-mobilenet
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /home/dc2-user/****200/03/exercise-2/public/ssd_mobilenet_v2_coco/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb
- Path for generated IR: /home/dc2-user/****200/03/exercise-2/.
- IR output name: ssd-mobilenet
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: image_tensor
- Output layers: detection_classes,detection_scores,detection_boxes,num_detections
- Input shapes: [1,300,300,3]
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: True
TensorFlow specific parameters:
- Input model in text protobuf format: False
- Path to model dump for TensorBoard: None
- List of shared libraries with TensorFlow custom layers implementation: None
- Update the configuration file with input/output node names: None
- Use configuration file used to generate the model with Object Detection API: /home/dc2-user/****200/03/exercise-2/public/ssd_mobilenet_v2_coco/ssd_mobilenet_v2_coco_2018_03_29/pipeline.config
- Use the config file: None
Model Optimizer version:
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/dc2-user/****200/03/exercise-2/./ssd-mobilenet.xml
[ SUCCESS ] BIN file: /home/dc2-user/****200/03/exercise-2/./ssd-mobilenet.bin
[ SUCCESS ] Total execution time: 98.30 seconds.
[ SUCCESS ] Memory consumed: 694 MB.
实验三、
batch 4
mo.py --input_model mobilenetv2-7.onnx --mean_values=data[123.675,116.28,103.53] --scale_values=data[58.624,57.12,57.375] --reverse_input_channels --output_dir $lab_dir --batch=4 --model_name mobilenetv2-7-batch-4
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7.onnx
- Path for generated IR: /home/dc2-user/****200/03/exercise-3/
- IR output name: mobilenetv2-7-batch-4
- Log level: ERROR
- Batch: 4
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: data[123.675,116.28,103.53]
- Scale values: data[58.624,57.12,57.375]
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: True
ONNX specific parameters:
Model Optimizer version:
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7-batch-4.xml
[ SUCCESS ] BIN file: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7-batch-4.bin
[ SUCCESS ] Total execution time: 20.22 seconds.
[ SUCCESS ] Memory consumed: 161 MB.
剪切模型,去掉模型前5层
将模型第六层"mobilenetv20_features_conv0_fwd"设置为模型优化器的--input 的参数,意味着我们剪切掉模型的前5层:
mo.py --input_model mobilenetv2-7.onnx --mean_values=data[123.675,116.28,103.53] --scale_values=data[58.624,57.12,57.375] --reverse_input_channels --output_dir $lab_dir --input="mobilenetv20_features_conv0_fwd" --model_name mobilenetv2-7-no-head
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7.onnx
- Path for generated IR: /home/dc2-user/****200/03/exercise-3/
- IR output name: mobilenetv2-7-no-head
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: mobilenetv20_features_conv0_fwd
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: data[123.675,116.28,103.53]
- Scale values: data[58.624,57.12,57.375]
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: True
ONNX specific parameters:
Model Optimizer version:
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7-no-head.xml
[ SUCCESS ] BIN file: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7-no-head.bin
[ SUCCESS ] Total execution time: 19.55 seconds.
[ SUCCESS ] Memory consumed: 161 MB.
用模型优化器将模型转化为FP16精度
mo.py --input_model mobilenetv2-7.onnx --mean_values=data[123.675,116.28,103.53] --scale_values=data[58.624,57.12,57.375] --reverse_input_channels --output_dir $lab_dir --data_type=FP16 --model_name mobilenetv2-7-FP16
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7.onnx
- Path for generated IR: /home/dc2-user/****200/03/exercise-3/
- IR output name: mobilenetv2-7-FP16
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: data[123.675,116.28,103.53]
- Scale values: data[58.624,57.12,57.375]
- Scale factor: Not specified
- Precision of IR: FP16
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: True
ONNX specific parameters:
Model Optimizer version:
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7-FP16.xml
[ SUCCESS ] BIN file: /home/dc2-user/****200/03/exercise-3/mobilenetv2-7-FP16.bin
[ SUCCESS ] Total execution time: 19.92 seconds.
[ SUCCESS ] Memory consumed: 161 MB.