伯禹学习平台第一次打卡 task05
卷积神经网络
填充
填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算
如果原输入的高和宽是和,卷积核的高和宽是和,在高的两侧一共填充行,在宽的两侧一共填充列,则输出形状为:
我们在卷积神经网络中使用奇数高宽的核,比如,的卷积核,对于高度(或宽度)为大小为的核,令步幅为1,在高(或宽)两侧选择大小为的填充,便可保持输入与输出尺寸相同。
步幅
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。
图3 高和宽上步幅分别为3和2的二维互相关运算
一般来说,当高上步幅为,宽上步幅为时,输出形状为:
如果,,那么输出形状将简化为。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是。
当时,我们称填充为;当时,我们称步幅为。
多输入通道
卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。
图4 含2个输入通道的互相关计算
假设输入数据的通道数为,卷积核形状为,我们为每个输入通道各分配一个形状为的核数组,将个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把个核数组在通道维上连结,即得到一个形状为的卷积核。
leNet
LeNet 模型
LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。
卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。
卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用的窗口,并在输出上使用sigmoid**函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。
全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
卷积升级网络进阶
LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。
机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。
神经网络发展的限制:数据、硬件
AlexNet
首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。
特征:
- 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
- 将sigmoid**函数改成了更加简单的ReLU**函数。
- 用Dropout来控制全连接层的模型复杂度。
- 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。