奇异值分解(SVD)原理与在降维中的应用

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:

Ax=λx Ax=\lambda x

其中 A 是一个 n×n 的矩阵,x是一个n维向量,则我们说 λ\lambda 是矩阵A的一个特征值,而 x 是矩阵 A 的特征值λ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值 λ1λ2...λn\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n,以及这n个特征值所对应的特征向量{w1,w2,...wn}\{w_1,w_2,...w_n\},,如果这 nn 个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:

A=WΣW1 A=W\Sigma W^{-1}

注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2. SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个 m×n 的矩阵,那么我们定义矩阵A的SVD为:

A=UΣVT A = U\Sigma V^T

其中U是一个m×m的矩阵,Σ\Sigma 是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足 UTU=I,VTV=IU^TU=I, V^TV=I。下图可以很形象的看出上面SVD的定义:
奇异值分解(SVD)原理与在降维中的应用

那么我们如何求出SVD分解后的 U,Σ,VU, \Sigma, V这三个矩阵呢?

如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 ATAA^TA。既然 ATAA^TA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(AAT)ui=λiui (AA^T)u_i = \lambda_i u_i

这样我们就可以得到矩阵 AATAA^T 的m个特征值和对应的m个特征向量u了。将AATAA^T的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V我们都求出来了,现在就剩下奇异值矩阵 Σ\Sigma 没有求出了。由于 Σ\Sigma 除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值 σ\sigma 就可以了。

我们注意到:

A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui A=U\Sigma V^T \Rightarrow AV=U\Sigma V^TV \Rightarrow AV=U\Sigma \Rightarrow Av_i = \sigma_i u_i \Rightarrow \sigma_i = Av_i / u_i

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵 Σ\Sigma

上面还有一个问题没有讲,就是我们说ATA的特征向量组成的就是我们SVD中的V矩阵,而AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。

A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT A=U\Sigma V^T \Rightarrow A^T=V\Sigma^T U^T \Rightarrow A^TA = V\Sigma^T U^TU\Sigma V^T = V\Sigma^2V^T

上式证明使用了: UTU=I,ΣTΣ=Σ2U^TU=I, \Sigma^T\Sigma=\Sigma^2。可以看出ATAA^TA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到ATAA^TA的特征向量组成的就是我们SVD中的U矩阵。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σi=λi \sigma_i = \sqrt{\lambda_i}

这样也就是说,我们可以不用 σi=Avi/ui\sigma_i = Av_i / u_i来计算奇异值,也可以通过求出ATAA^TA的特征值取平方根来求奇异值。

3. SVD计算举例

这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

A=(011110) \mathbf{A} = \left( \begin{array}{ccc} 0& 1\\ 1& 1\\ 1& 0 \end{array} \right)

我们首先求出ATAA^TAAATAA^T

ATA=(011110)(011110)=(2112) \mathbf{A^TA} = \left( \begin{array}{ccc} 0& 1 &1\\ 1&1& 0 \end{array} \right) \left( \begin{array}{ccc} 0& 1\\ 1& 1\\ 1& 0 \end{array} \right) = \left( \begin{array}{ccc} 2& 1 \\ 1& 2 \end{array} \right)

AAT=(011110)(011110)=(110121011) \mathbf{AA^T} = \left( \begin{array}{ccc} 0& 1\\ 1& 1\\ 1& 0 \end{array} \right) \left( \begin{array}{ccc} 0& 1 &1\\ 1&1& 0 \end{array} \right) = \left( \begin{array}{ccc} 1& 1 & 0\\ 1& 2 & 1\\ 0& 1& 1 \end{array} \right)

进而求出ATAA^TA的特征值和特征向量:

λ1=3;v1=(1/21/2);λ2=1;v2=(1/21/2) \lambda_1= 3; v_1 = \left( \begin{array}{ccc} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right); \lambda_2= 1; v_2 = \left( \begin{array}{ccc} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right)

接着求AATAA^T的特征值和特征向量:

λ1=3;u1=(1/62/61/6);λ2=1;u2=(1/201/2);λ3=0;u3=(1/31/31/3) \lambda_1= 3; u_1 = \left( \begin{array}{ccc} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{array} \right); \lambda_2= 1; u_2 = \left( \begin{array}{ccc} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{array} \right); \lambda_3= 0; u_3 = \left( \begin{array}{ccc} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{array} \right)

利用Avi=σiui,i=1,2Av_i = \sigma_i u_i, i=1,2求奇异值:

(011110)(1/21/2)=σ1(1/62/61/6)σ1=3 \left( \begin{array}{ccc} 0& 1\\ 1& 1\\ 1& 0 \end{array} \right) \left( \begin{array}{ccc} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right) = \sigma_1 \left( \begin{array}{ccc} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{array} \right) \Rightarrow \sigma_1=\sqrt{3}

(011110)(1/21/2)=σ2(1/201/2)σ2=1 \left( \begin{array}{ccc} 0& 1\\ 1& 1\\ 1& 0 \end{array} \right) \left( \begin{array}{ccc} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right) = \sigma_2 \left( \begin{array}{ccc} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{array} \right) \Rightarrow \sigma_2=1

当然,我们也可以用σi=λi\sigma_i = \sqrt{\lambda_i}直接求出奇异值为3\sqrt{3}和1.

最终得到A的奇异值分解为:

A=UΣVT=(1/61/21/32/601/31/61/21/3)(300100)(1/21/21/21/2) A=U\Sigma V^T = \left( \begin{array}{ccc} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3}\\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{array} \right) \left( \begin{array}{ccc} \sqrt{3} & 0 \\ 0 & 1\\ 0 & 0 \end{array} \right) \left( \begin{array}{ccc} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{array} \right)

4. SVD的一些性质

上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:
Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT A_{m \times n} = U_{m \times m}\Sigma_{m \times n} V^T_{n \times n} \approx U_{m \times k}\Sigma_{k \times k} V^T_{k \times n}

其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 Um×k,Σk×k,Vk×nTU_{m \times k},\Sigma_{k \times k} ,V^T_{k \times n} 来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

奇异值分解(SVD)原理与在降维中的应用

由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

5. SVD用于PCA

在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵 XTXX^TX 的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵XTXX^TX,当样本数多样本特征数也多的时候,这个计算量是很大的。

注意到我们的SVD也可以得到协方差矩阵XTXX^TX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTXX^TX,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

假设我们的样本是m×n的矩阵X,如果我们通过SVD找到了矩阵XTXX^TX最大的d个特征向量张成的m×d维矩阵U,则我们如果进行如下处理:

Xd×n=Ud×mTXm×n X'_{d \times n} = U_{d \times m}^TX_{m \times n}

可以得到一个d×n的矩阵X‘,这个矩阵和我们原来的m×n维样本矩阵X相比,行数从m减到了k,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。

6. SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

原文转载自:https://www.cnblogs.com/pinard/p/6251584.html,仅用于学习交流,感谢原作者分享!