【数学】函数极限(宇哥笔记)

【数学】函数极限(宇哥笔记)【数学】函数极限(宇哥笔记)

七种未定式

00,,0,,0,00,1 分别为:\frac00,\frac\infty\infty,\infty\cdot0,\infty-\infty,\infty^0,0^0,1^\infty

比阶

limxf(x)g(x)00{c0,0,,{limx0sinxx=1limx0x2x=0limx0xx2= \lim_{x\to\cdot}\frac{f(x)}{g(x)}\underrightarrow{\quad\frac00\quad}\begin{cases}c\neq0,同阶无穷小\\0,高阶无穷小\\\infty,低阶无穷小\end{cases}\\ \qquad\qquad\quad如\begin{cases}\lim_{x\to0}\frac{sinx}x=1\\\lim_{x\to0}\frac{x^2}x=0\\\lim_{x\to0}\frac x{x^2}=\infty\end{cases}

形式上

1.limxf(x)g(x),xtanx,exetanx,f(x)g(x)2.limxf(x)g(x),limx0d(sin4x)d(x2)ln(1+x2)=limx012x4sin3xcosxx2=23.,limx1x[t2(e1t1)t]dtx2ln(1+1x)=limx=x2(e1x1)x1x=1tlimt0+(et1t21t)=limt0+et1tt2=124.anxnlimx0n=12nn!x2narctanx2=limx02x2+222!x4+x2=2 1.\lim_{x\to\cdot}\frac{f(x)}{g(x)},差函数,如x-tanx,e^x-e^{tanx},\sqrt{f(x)}-\sqrt{g(x)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ 2.\lim_{x\to\cdot}\frac{f'(x)}{g(x)},导函数,如\lim_{x\to0}\frac{\frac{d(sin^4x)}{d(x^2)}}{\ln(1+x^2)}=\lim_{x\to0}\frac{\frac1{2x}\cdot4sin^3x\cdot cosx}{x^2}=2\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ 3.积分,\lim_{x\to\infty}\frac{\int_1^x[t^2(e^\frac1t-1)-t]dt}{x^2\ln(1+\frac1x)}=\lim_{x\to\infty}=\frac{x^2(e^\frac1x-1)-x}{1}\underrightarrow{x=\frac1t}\lim_{t\to0^+}(\frac{e^t-1}{t^2}-\frac1t)=\lim_{t\to0^+}\frac{e^t-1-t}{t^2}=\frac12\\ 4.\sum a_nx^n形式,\lim_{x\to0}\frac{\sum_{n=1}^\infty\frac{2^n}{n!}x^{2n}}{arctanx^2}=\lim_{x\to0}\frac{2x^2+\frac{2^2}{2!}x^4+\ldots}{x^2}=2\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad

方法上

恒等变形与等价替换
[1]limx01+tanx1+sinxxln(1+x)x2   =limx0112x3tanxsinx1+tanx+1+sinx=12[2]limx0cosxcosx3sin2x  []cosx6=t,=limt1t3t21t12=limt1t1t121=limt1t1(t1)(t11+t10++1)=112[]anbn=(ab)(an1+an2b++abn2+bn1) \color{maroon}{[例1]\lim_{x\to0}\frac{\sqrt{1+tanx}-\sqrt{1+sinx}}{x\ln(1+x)-x^2}}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \\ \color{blac}原式=\lim_{x\to0}\frac{1}{-\frac12x^3}\cdot\frac{tanx-sinx}{\sqrt{1+tanx}+\sqrt{1+sinx}}=\frac12\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ \color{maroon}{[例2]\lim_{x\to0}\frac{\sqrt{cosx}-\sqrt[3]{cosx}}{sin^2x}}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\quad\ \ \\ \color{black}[分析]令\sqrt[6]{cosx}=t,原式=\lim_{t\to1^-}\frac{t^3-t^2}{1-t^{12}}=-\lim_{t\to1^-}\frac{t-1}{t^{12}-1}=-\lim_{t\to1^-}\frac{t-1}{(t-1)(t^{11}+t^{10}+\ldots+1)}=-\frac1{12}\\ \color{red}{[注]a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\ldots+ab^{n-2}+b^{n-1})}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad

洛必达法则(辅助手段)
[1]limx1lnxln(1x)  =limx1ln(1+x1)ln(1x)=limx1(x1)ln(1x)t=1xlimt0+tlnt=0[2]limx+(x+1+x2)1x   =elimx+1xln(x+1+x2)=elimx+1x+1+x2(1+12(1+x2)122x)=elimx+11+x2=e0=1 \color{maroon}{[例1]\lim_{x\to1^-}\ln x\ln(1-x)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \\ \color{black}原式=\lim_{x\to1^-}\ln(1+x-1)\ln(1-x)=\lim_{x\to1^-}(x-1)\ln(1-x)\underrightarrow{t=1-x}-\lim_{t\to0^+}t\ln t=0\\ \color{maroon}{[例2]\lim_{x\to+\infty}(x+\sqrt{1+x^2})^\frac1x}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \\ \color{black}原式=e^{\lim_{x\to+\infty}\frac1x\ln(x+\sqrt{1+x^2})}=e^{\lim_{x\to+\infty}\frac{1}{x+\sqrt{1+x^2}}(1+\frac12(1+x^2)^{-\frac12}\cdot2x)}=e^{\lim_{x\to+\infty}\frac{1}{\sqrt{1+x^2}}}=e^0=1

泰勒公式
anxn,x0(x3)      sinx=x16x3+15!x5+(x5)    arcsinx=x+16x3+1100x5+(x5)tanx=x+13x3+(x3)   arctanx=x13x3+(x3)cosx=112x2+124x4+(x4)    ex=1+x+x22+x36+(x3)ln(1+x)=x12x2+13x3+(x3)    (1+x)α=1+αx+α(α1)2x2+(x2) 泰勒发现,任何可导函数都可以写成\sum a_nx^n,这样,任何可导函数都具有了统一美,也可以统一计算\\ 当x\to0时,就如以下常见的函数泰勒展开式,最后的\circ(x^3)被称作佩亚诺余项\quad\qquad\qquad\qquad\ \ \ \ \ \ \\ sinx=x-\frac16x^3+\frac{1}{5!}x^5+\circ(x^5)\ \ \ \ \quad arcsinx=x+\frac16x^3+\frac1{100}x^5+\circ(x^5)\\ tanx=x+\frac13x^3+\circ(x^3)\ \ \ \qquad arctanx=x-\frac13x^3+\circ(x^3)\\ cosx=1-\frac12x^2+\frac1{24}x^4+\circ(x^4)\ \ \ \ \qquad \qquad e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\circ(x^3)\\ \ln(1+x)=x-\frac12x^2+\frac13x^3+\circ(x^3)\ \ \ \ \quad(1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+\circ(x^2)
[1]x0cosxex22axba,b[]1.AB2.ABA,Bxcox=112x2+124x4+(x4)    ex22=1x22+x48+(x4)I=112x4+(x4)   a=112,b=4[2]limx0xsinx+f(x)x4,limx0x3f(x)()[]limx0xsinx+f(x)x4x=A0=0=limx0xsinx+f(x)x3=16+limx0f(x)x3=0I=6 \color{maroon}{[例1]x\to0时,cosx-e^{-\frac{x^2}{2}}与ax^b为等价无穷小,求a,b}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ \color{black}[分析]展开到几阶?1.\frac AB型,上下同阶;2.A-B型,幂次最低,即将A,B分别展开至系数不相等的x的最低次幂为止\\ cox=1-\frac12x^2+\frac1{24}x^4+\circ(x^4)\ \ \ \ e^{-\frac{x^2}{2}}=1-\frac{x^2}{2}+\frac{x^4}{8}+\circ(x^4)\\ I=-\frac1{12}x^4+\circ(x^4)\ \ \ \therefore a=-\frac1{12},b=4\\ \color{maroon}{[例2]已知\lim_{x\to0}\frac{x-sinx+f(x)}{x^4}\exist,求\lim_{x\to0}\frac{x^3}{f(x)}(已知某一极限,求另一极限)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ \color{black}[分析]方法一:脱帽法\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ 方法二:\lim_{x\to0}\frac{x-sinx+f(x)}{x^4}\cdot x=A\cdot0=0\\ \qquad\qquad\quad=\lim_{x\to0}\frac{x-sinx+f(x)}{x^3}=\frac16+\lim_{x\to0}\frac{f(x)}{x^3}=0\\ \therefore I=-6\qquad\qquad\qquad\qquad\qquad\qquad

夹逼法则

例题暂无

[x]代表取整,取不超过x的最大整数,如[1.99]=1,[-1.99]=-2

单调有界法则
[](2+2)n=An+Bn2,An,BnlimnAnBn[[]An+1+Bn+12=(2+2)n(2+2) =(An+Bn2)(2+2)=2An+2Bn+(An+2Bn)2 {An+1=2An+2BnBn+1=An+2BnAn+1Bn+1=2An+2BnAn+2Bn=2AnBn+2AnBn+2AnBn=xn  xn+1=2xn+2xn+2=22xn+20<x2<2xn+1xn=(22xn+2)(22xn1+2)=2xn1+22xn+2=2(xnxn1)(xn2+2)(xn+2){xn}limnxna  a=22a+2a=2 limnAnBn=2 \color{maroon}{[例]已知(2+\sqrt{2})^{n}=A_n+B_n\sqrt{2},A_n,B_n为整数,求\lim_{n\to\infty}\frac{A_n}{B_n}}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ \color{black}[[分析]递推式\to \color{red}{A_{n+1}}\color{black}+\color{red}{B_{n+1}}\color{black}\sqrt{2}=(2+\sqrt2)^n(2+\sqrt2)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \\ =(A_n+B_n\sqrt2)(2+\sqrt2)\qquad\qquad\quad\\ =\color{red}{2A_n+2B_n}\color{black}+\color{red}{(A_n+2B_n)}\color{black}\sqrt2\qquad\ \\ \qquad\qquad\qquad\qquad\longrightarrow\begin{cases}A_{n+1}=2A_n+2B_n\\B_{n+1}=A_n+2B_n\end{cases}\longrightarrow\frac{A_{n+1}}{B_{n+1}}=\frac{2A_n+2B_n}{A_n+2B_n}=\frac{2\frac{A_n}{B_n}+2}{\frac{A_n}{B_n}+2}\\ 令\frac{A_n}{B_n}=x_n\ \ 即x_{n+1}=\frac{2x_n+2}{x_n+2}=2-\frac2{x_n+2}\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ 显然,0<x_2<2且\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ x_{n+1}-x_n=(2-\frac{2}{x_n+2})-(2-\frac{2}{x_{n-1}+2})=\frac{2}{x_{n-1}+2}-\frac{2}{x_{n}+2}=\frac{2(x_n-x_{n-1})}{(x_{n-2}+2)(x_n+2)}\longrightarrow \lbrace x_n\rbrace单调\\ \therefore\lim_{n\to\infty}x_n存在且记为a\ \ a=2-\frac2{a+2}\to a=\sqrt2\ 即\lim_{n\to\infty}\frac{A_n}{B_n}=\sqrt2\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad