最短路径的两种算法(迪杰斯特拉算法和弗洛伊德算法)

一、迪杰斯特拉(Dijkstra)算法

1、定义描述

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法的时间复杂度为O(N^2)。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径:

最短路径的两种算法(迪杰斯特拉算法和弗洛伊德算法)


2、算法思想

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

3、算法步骤

将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。
设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[ s ][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。
在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。
重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

4、算法图解

最短路径的两种算法(迪杰斯特拉算法和弗洛伊德算法)

最短路径的两种算法(迪杰斯特拉算法和弗洛伊德算法)

最短路径的两种算法(迪杰斯特拉算法和弗洛伊德算法)

 

二、弗洛伊德(Floyd)算法

1、定义描述

Floyd算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd算法的时间复杂度为O(N^3)。

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

2、算法思想

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释。

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

3、算法步骤

从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。