第四章 ORACLE体系结构 之二

 

第四章 ORACLE体系结构 之二

~~~~~~~~~~~~

 

oracle数据库——架构和控件

一、oracle数据库发展

oracle7——》oracle8——》oracle8i——》oracle9i——》oracle10g——》oracl11g

二、oracle架构

1、oracle数据库是面向对象的关系型数据库管理系统。

2、优点:稳定性高、安全性强、性能优

3、发展:主机系统  C/S体系结构  N-层体系结构

4、

第四章 ORACLE体系结构 之二

5、接下来具体介绍oracle server的架构

第四章 ORACLE体系结构 之二

oracle server由实例/例程(instance)和数据库组成。

 

~~~~~~~~~~~~~·

Oracle体系结构的概览 

 

第四章 ORACLE体系结构 之二

 

更详细的一张结构图如下

 

第四章 ORACLE体系结构 之二

 

 

Oracle服务器

由Oracle实例和Oracle数据库两大部分组成。

 

Oracle实例

是一种数据库访问机制,主要由内存结构和进程结构组成。

内存结构主要包括系统全局区(System Global Area,SGA)、进程全局区(Process Global Area,PGA)等

实例的后台进程有5个是必须的

SMON 系统监视器进程

PMON 进程监视器进程

DBWR 数据库书写器

LGWR 日志书写器

CKPT 检查点进程

每个实例只能操作其对应的一个数据库,但一个数据库可以同时被几个实例操作(RAC)

 

Oracle数据库

由以下三种操作系统文件组成:

控制文件(control files)

数据文件(data files)

重做日志文件(redo log files)

 

其它服务器文件:

初始化参数文件(parameter files)

口令文件(password files)

归档重做日志文件(archived redo log files)

 

与Oracle服务器的连接

一个连接即称为一个会话,连接可分为以下两种:

1、专用服务器连接

一个用户进程对应创建一个服务器进程,用户进程与服务器进程是一对一的关系。

2、共享服务器连接

多个用户进程同时对应一个服务器进程。

 

各种不同的连接方式

1、基于主机方式

用户进程与服务器进程运行在同一台计算机相同的操作系统下,用户进程与Oracle服务器的通信是通过操作系统内部的进程通信(inter process communication,IPC)机制来建立的。

 

2、客户端-服务器(client-server)(两层模型)方式

用户进程与Oracle服务器的通信是通过网络协议(如TCP/IP)来完成的。

 

3、客户端-应用服务器-服务器(client-application server-server)(三层模型)方式

用户的个人计算机通过网络与应用服务器或网络服务器进行通信,该应用服务器或网络服务器同样再通过网络与运行数据库的计算机连接。

 

Oracle执行SQL查询语句的步骤

1、SQL正文放入共享池(shared pool)的库缓存(library cache)。

2、检查是否有相同的SQL正文,没有就进行以下编译处理,否则跳过。

1)语法检查

2)通过数据字典检查表和列的定义

3)对所操作的对象加编译锁,防止编译期间的对象定义被改变

4)检查用户权限

5)生成执行计划

6)将编译后的代码和执行计划放入共享SQL区

3、执行

由服务器进程执行SQL语句。

4、提取数据

由服务器进程选择所需的数据行,需要时排序(PGA中),返回给用户进程。

 

系统全局区(System Global Area,SGA)

SGA包含以下几大块:

固定区域(Fixed Size):存储SGA中各个组件的信息,大小不能修改

可变区域(Variable Size):包括共享池、大池、流池、JAVA池

数据库高速缓冲区缓存(Database buffer cache):大小由参数db_cache_size指定(10g后参数db_cache_size默认为0)

重做日志缓冲区缓存(Redo log buffer cache):大小通常大于参数log_buffer的设置,因为在内存中还要设置保护页对log buffer进行保护。

 

以下命令可以看到SGA的内存分配概览

show sga

 

Total System Global Area 4960579584 bytes

Fixed Size                  2184232 bytes

Variable Size            2902461400 bytes

Database Buffers         2046820352 bytes

Redo Buffers                9113600 bytes

 

或者

select * from v$sga;

 

NAME                      VALUE

-------------------- ----------

Fixed Size              2184232

Variable Size        2902461400

Database Buffers     2046820352

Redo Buffers            9113600

 

共享池(shared pool)

用于存放SQL语句、PL/SQL代码、数据字典、资源锁和其他控制信息。它由初始化参数SHARED_POOL_SIZE控制其大小。它包含以下几个缓冲区:

1、数据字典缓存(data dictionary cache):用于存储经常使用的数据字典信息。比如(表的定义、用户名、口令、权限、数据库的结构等)。Oracle运行过程中经常访问该缓存以便解析SQL语句,确定操作的对象是否存在,是否具有权限等。如果不在数据字典缓存中,服务器进程就从保存数据字典信息的数据文件中将其读入到数据字典缓存中。数据字典缓存中保存的是一条一条的记录(就像是内存中的数据库),而其他缓存区中保存的是数据块信息。

 

2、库缓存(Library Cache):用于保存最近解析过的SQL语句、PL/SQL过程。Oracle在执行一条SQL语句、一段PL/SQL过程前首先在库缓存中搜索,如果查到它们已经解析过了,就利用库缓存中的解析结果和执行计划来执行,而不必重新对它们进行解析,显著提高执行速度。Oracle是通过比较SQL或PL/SQL语句的正文来决定两个语句是否相同的,只有正文完全相同,Oracle才重用已存在的编译后的代码和执行计划。应该尽量用绑定变量的方式写SQL,绑定变量不是在编译阶段赋值的,而是在运行阶段赋值的,因此语句可以不用重新编译。

 

库缓存的管理采用LRU(least recently used)的队列算法,即最近最少使用的队列算法。刚使用的内存块放在LRU队列的头部,而进程每次从队列的尾部获取内存块,获取到的内存块立即移至队列头部。最终使长时间没有使用到的内存块自然移到了队列的尾部而被最先使用。

 

Oracle没有提供单独设置库缓存或数据字典缓存空间大小的方法,而是通过设置共享池的大小来间接设置,通过参数SHARED_POOL_SIZE可调整,其大小受限于SGA的尺寸SGA_MAX_SIZE参数。

 

ORACLE将每一条SQL语句分解为可共享、不可共享的两部分。

共享SQL区:存储的是最近执行的SQL语句、解析后的语法树和优化后的执行计划。这样以后执行相同的SQL语句就直接利用在共享SQL区中的缓存信息,不必重复语法解析了。Oracle在执行一条新的SQL语句时,会为它在共享SQL区中分配空间,分配的大小取决于SQL语句的复杂度。如果共享SQL区中没有空闲空间,就利用LRU算法,释放被占用的空间。

私有SQL区(共享服务器模式):存储的是在执行SQL语句时与每个会话或用户相关的私有信息。其他会话即使执行相同的SQL语句也不会使用这些信息。比如绑定变量、环境和会话参数。

3、SQL和PL/SQL结果缓存:此高速缓存用于存储SQL查询或PL/SQL函数的结果,以加快其将来的执行速度。

4、锁与其他控制结构:存储ORACLE例程内部操作所需的信息,如各种锁、闩、寄存器值等。

 

数据库高速缓冲区缓存(Database Buffer Cache)

也叫块缓存区,用于存放从数据文件读取的数据块,其大小由初始化参数DB_CACHE_SIZE决定。

 

工作原理是通过LRU队列(最近最少使用Least Recently Used)。查询时,Oracle会先把从磁盘读取的数据放入内存供所有用户共享,以后再查询相关数据时不用再次读取磁盘。插入和更新时,Oracle会先在该区域中缓存数据,之后批量写到硬盘中。通过块缓冲区,Oracle可以通过内存缓存提高磁盘的I/O性能。

 

数据高速缓存块由许多大小相等的缓存块组成,这些缓存块分为3大类:

1)脏缓存块(Dirty buffers):脏缓存块中保存的是被修改过的缓存块。即当一条SQL语句对某个缓存块中的数据进行修改后,该缓存块就被标记为脏缓存块。最后该脏缓存块被DBWn进程写入到硬盘的数据文件中永久保存。

2)命中缓存块(Pinned buffers):命中缓存块中保存的是最近正在被访问的缓存块。它始终被保留在数据高速缓存中,不会被写入数据文件。

3)空闲缓存块(Free buffers):该缓存块中没有数据,等待被写入数据。oracle从数据文件中读取数据后,寻找空闲缓存块,以便写入其中。

 

Oracle通过2个列表(DIRTY、LRU)来管理缓存块:

1)DIRTY列表中保存已经被修改但还没有被写入到数据文件中的脏缓存块。

2)LRU列表中保存所有的缓存块(还没有被移动到DIRTY列表中的脏缓存块、空闲缓存块、命中缓存块)。当某个缓存块被访问后,该缓存块就被移动到LRU列表的头部,其他缓存块就向LRU列表的尾部移动。放在最尾部的缓存块就最先被移出LRU列表。

 

数据高速缓存的工作原理过程:

1)ORACLE在将数据文件中的数据块复制到数据高速缓存之前,先在数据高速缓存中找空闲缓存块,以便容纳该数据块。Oracle 将从LRU列表的尾部开始搜索,直到找到所需的空闲缓存块为止。

2)如果先搜索到的是脏缓存块,将该脏缓存块移动到DIRTY列表中,然后继续搜索。如果搜索到的是空闲缓存块,则将数据块写入,然后将该缓存块移动到DIRTY列表的头部。

3)如果能够搜索到足够的空闲缓存块,就将所有的数据块写入到对应的空闲缓存块中,搜索写入过程结束。

4)如果没有搜索到足够的空闲缓存块,则ORACLE就先停止搜索,而是**DBWn进程,开始将DIRTY列表中的脏缓存块写入到数据文件中。

5)已经被写入到数据文件中的脏缓存块将变成空闲缓存块,并被放入到LRU列表中。执行完成这个工作后,再重新开始搜索,直到找到足够的空闲缓存块为止。

这里可以看出,如果你的高速缓冲区很小的,不停地写写,造成很大I/O开销。

 

块缓冲区可以配置1、2或3个缓冲池,默认只有第一个:

1)默认池(Default pool):所有数据默认都在这里缓存,除非你在建表的时候指定 Store(buffer_pool keep) or Store(buffer_pool recycle)。使用LRU算法管理。

2)保持池(Keep pool):缓存需要多次重用的数据,长期保存在内存中,缺省值为0。

3)回收池(Recycle pool):用来缓存很少重用的数据,用完就释放,缺省值为0。

 

原来只有一个默认池,所有数据都在这里缓存。这样会产生一个问题:大量很少重用的数据会把需重用的数据“挤出”缓冲区,造成磁盘I/O增加,运行速度下降。后来分出了保持池和回收池根据是否经常重用来分别缓存数据。这三部分内存池需要手动确定大小,并且之间没有共享。例如:保持池中已经满了,而回收池中还有大量空闲内存,这时回收池的内存不会分配给保持池,这些池一般被视为一种非常精细的低级调优设备,只有所有其他调优手段大多用过之后才应考虑使用。

 

在9i之前,数据缓冲区的大小是由DB_BLOCK_BUFFER决定的,缓冲区的大小为DB_BLOCK_SIZE(Oracle数据块大小,创建数据库时设定好后续不能改变)和DB_BLOCK_BUFFERS(缓冲区块的个数)这两个参数的乘积,改变需重启数据库。之后的版本则是由参数DB_CACHE_SIZE及DB_nK_CACHE_SIZE确定。不同的表空间可以使用不同的块大小,在创建表空间中加入参数BLOCKSIZE指定该表空间数据块的大小,如果指定的是2k,则对应的缓冲区大小为DB_2K_CACHE_SIZE参数的值,如果指定的是4k,则对应的缓冲区大小为DB_4K_CACHE_SIZE参数的值,以此类推。如果不指定BLOCKSIZE,则默认为参数DB_BLOCK_SIZE的值,对应的缓冲区大小是DB_CACHE_SIZE的值。

 

数据库高速缓冲区缓存大小的建议可以参看内存缓冲区顾问v$db_cache_advice

打开或关闭该顾问

alter system set db_cache_advice=on|off|ready;

 

重做日志缓冲区(Redo Log Buffer Cache)

Oracle在DML或DDL操作改变数据写到数据库高速缓冲区缓存之前,先写入重做日志缓冲区,随后LGWR后台进程再把日志条目写到磁盘上的联机日志文件中。日志缓冲区的大小由初始化参数log_buffer决定大小。

 

以下情况触发LGWR进程将日志缓存数据写到联机日志文件中:

1)每隔3秒

2)缓存达到1MB或1/3满时

3)用户提交时

4)缓冲区的数据写入磁盘前

 

大池(Large Pool)

可以根据实际业务需要来决定是否在SGA区中创建大池。如果没有创建大池,则需要大量内存空间的操作将占用共享池的内存, 将对系统性能带来影响。

大池没有LRU队列,在共享服务器连接时,PGA的大部分区域(UGA)将放入大池(不包括堆栈区域),并行化的数据库操作、大规模的I/O及备份和恢复操作可能用到大池。大池由初始化参数LARGE_POOL_SIZE确定其大小。

 

流池(Stream Pool)

加强对流的支持,大小由参数STREAM_POOL_SIZE确定。流池(如果没有配置流池,则是共享池中至多10%的空间)用于缓存流进程在数据库间移动/复制数据时使用的队列消息。

Java池(Java Pool)

用于支持在数据库中运行java代码,大小由参数JAVA_POOL_SIZE确定。

 

进程全局区(Porcess Global Area, PGA)

一个PGA是一块独占内存区域,Oracle进程以专有的方式用它来存放数据和控制信息。当Oracle进程启动时,PGA也就由Oracle数据库创建了。当用户进程连接到数据库并创建一个对应的会话时,Oracle服务进程会为这个用户专门设置一个PGA区,用来存储这个用户会话的相关内容。当这个用户会话终止时,系统会自动释放这个PGA区所占用的内存。这个PGA区对于数据库的性能有比较大的影响,特别是对于排序操作的性能。

 

PGA主要包含排序区、会话区、堆栈区和游标区四个部分。通常情况下,系统管理员主要关注的是排序区,在必要时需要手工调整这个排序区的大小。游标区是一个动态的区域,在游标打开时创建,关闭时释放,故在数据库开发时,不要频繁的打开和关闭游标可以改善数据库的性能。其他分区的内容管理员只需要了解其用途,日常的维护交给数据库系统来完成即可。

 

1、为排序设置合理的排序区大小

当用户需要对数据进行排序时,系统会将需要排序的数据保存到PGA中的一个排序区内,然后在这个排序区内对这些数据进行排序。如需要排序的数据有2M,那么排序区内必须至少要有2M的空间来容纳这些数据。然后排序过程中又需要有2M的空间来保存排序后的结果。由于系统从内存中读取数据比从硬盘中读取数据的速度要快几千倍,为此如果这个数据排序与读取的操作都能够在内存中完成,无疑可以在很大程度上提高数据库排序与访问的性能。如果这个排序的操作都能够在内存中完成,显然这是很理想的。但是如果PGA中的排序区容量不够,不能容纳排序后的数据,系统会从硬盘中获取一个空间,用来保存需要排序的数据。此时排序的效率就会降低许多。为此在数据库管理中,如果发现用户的很多操作都需要用到排序,那么为用户设置比较大的排序区,可以提高用户访问数据的效率。

 

在Oracle数据库中,这个排序区主要用来存放排序操作产生的临时数据。一般来说,这个排序区的大小占据PGA程序缓存区的大部分空间,这是影响PGA区大小的主要因素。在小型应用中,数据库管理员可以直接采用其默认的值。但是在一些大型的应用中,或者需要进行大量记录排序操作的数据库系统中,管理员可能需要手工调整这个排序区的大小,以提高排序的性能,这可以通过初始化参数SORT_AREA_SIZE来实现。

 

2、会话区保存着用户的权限等重要信息

会话区保存了会话所具有的权限、角色、性能统计等信息,通常都是由数据库系统自我维护,管理员不用干预。当用户进程与数据库建立会话时,系统会将这个用户的相关权限查询出来,保存在这个会话区内。用户进程在访问数据时,系统会核对会话区内的用户权限信息,看看其是否具有相关的访问权限。

 

3、堆栈区保存变量信息

保存着绑定变量、会话变量、SQL语句运行时的内存结构等重要的信息。通常都是由数据库系统自我维护,管理员不用干预。这些分区的大小,也是系统根据实际情况来进行自动分配的。当这个用户会话结束时,系统会自动释放这些区所占用的空间。

 

4、游标区

游标区是一个动态的区域。当用户执行游标语句打开游标时,系统会在PGA中创建游标区,当关闭游标时,这个区域就会被释放。创建与释放需要占用一定的系统资源,花费一定的时间,如果频繁的打开和关闭游标,就会降低语句的执行性能。所以在写语句时,游标最好不要频繁的打开和关闭。

 

初始化参数OPEN_CURSORS可以根据实际需要来设置,控制用户能够同时打开游标的数量。在确实需要游标的情况下,如果硬件资源支持的话,也可以放宽这个限制。

 

用户全局区(User Global Area, UGA)

专用服务器模式下,进程和会话是一对一的关系,UGA被包含在PGA中,在共享服务器模式下,进程和会话是一对多的关系,所以UGA就不再属于PGA了,而会在大型池(Large Pool)中分配。但如果从大型池中分配失败,如大型池太小,或是根本没有设置大型池,则从共享池(Shared Pool)中分配。

 

实例的后台进程

1、重做日志写进程LGWR

Oracle使用快速提交的技术,保证系统的效率,并保证系统崩溃时所提交的数据可以得到恢复,引入系统改变号SCN。

SCN是单调递增的正整数,与Oracle内部时间戳对应,保证系统中数据的同步和读一致性。

发出commit命令后:

1)服务器进程把提交的记录连同产生的SCN号一起写入重做日志缓存。

2)LGWR把缓存中一直到提交的记录和SCN连续的写入联机重做日志文件中。在此之后,Oracle就能够保证即使在系统崩溃的情况下所有已提交的数据也可以得到恢复(联机重做日志文件在归档前不能被覆盖重写)。

3)Oracle通知用户进程提交已经完成。

4)服务器进程修改数据库高速缓存中的数据状态,释放资源和打开锁。

写日志要比写数据效率高,记录格式紧凑,I/O量少,顺序写入。

 

LGWR写入时机:

1)事务被提交

2)日志缓存中变化记录超过1MB

3)日志缓存中的记录超过缓冲区容量的1/3

4)DBWR写入数据文件之前

5)每3秒钟

 

日志挖掘器( log miner)工具,可将日志文件中的内容转化为用户能够理解的正文信息。

 

2、数据库写进程DBWR/DBWn

Oracle实例允许启动最多10个数据库写进程DBW0~DBW9

DBWn写入时机:

1)当脏缓冲区的数量超过了所设定的限额

2)所设定的时间间隔已到

3)当有进程需要数据库高速缓冲区却找不到空闲的缓冲区时

4)当检查点发生时

5)当某个表被删除或截断时

6)当某个表空间被设置为只读时

7)当对某个表空间进行联机备份时

8)当某个临时表空间被设置为脱机状态或正常状态时

 

3、系统监视器进程SMON

当Oracle系统由于某种原因如断电,SGA中已经提交但还未被写入数据文件中的数据将丢失。当数据库重启时,系统监视器进程SMON将自动执行Oracle实例的恢复工作。

1)执行前滚,将已提交到重做日志文件中但还未写到数据文件中的数据写到数据文件中。(通过SCN号识别提交记录)

2)前滚完成后立即打开数据库,这时数据文件中可能还有一些没有提交的数据。(之所以这样安排,主要是为了提高系统的效率)

3)回滚未提交的事务(数据)

4)执行一些磁盘空间的维护工作

 

4、进程监视器进程PMON

当某个用户进程崩溃时(如未正常退出),进程监视器进程PMON将负责清理工作。

1)回滚用户当前的事务

2)释放用户所加的所有表一级和行一级的锁

3)释放用户所有的其它资源

 

5、检查点进程CKPT

Oracle为了提高系统效率和保证数据库的一致性,引入检查点事件。

DBWR将SGA中所有已改变了的数据库高速缓冲区缓存中的数据(包括已提交的和未提交的)写到数据文件中时,将产生检查点事件。

保证了所有到检查点为止的变化了的数据都已经写到了数据文件中,在实例恢复时检查点之前的重做日志记录已经不再需要,从而加快了实例的恢复速度。

检查点事件发生时,Oracle要将检查点号写入数据文件头中,还要将检查点号、重做日志***、归档日志名称和SCN号都写入控制文件中。

过于频繁的检查点会使联机操作受到冲击,因此需要在实例的恢复速度和联机操作之间折中。(大多在20分钟以上)

检查点发生时机:

1)重做日志的切换

2)LOG_CHECKPOINT_TIMEOUT 这个延迟参数的到达

3)相应字节(LOG_CHECKPOINT_INTERVAL* size of IO OS blocks)被写到当前的重做日志

4)ALTER SYSTEM SWITCH LOGFILE命令

5)ALTER SYSTEM CHECKPOINT命令

查看数据库的检查点号:

Select checkpoint_change# from v$database;

查看数据库当前的SCN号:

Select current_scn from v$database;

 

6、归档日志进程ARCH/ARCn

当数据库运行在归档日志模式下时,ARCH/ARCn进程将把日志切换后的联机重做日志文件中的数据复制到归档日志文件中,保证不会因致联机日志文件组的循环切换而导致日志数据丢失,从而保证数据库的可完全恢复。

归档日志文件是脱机的。

Oracle确保在一组重做日志的归档操作完成之前不会重新使用该组重做日志。

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ORACLE体系结构,很详细

2016年06月29日 13:57:54 阅读数:14461 标签: oracle 更多

个人分类: oracle

数据库(Database)

数据库是一个数据的集合,不仅是指物理上的数据,也指物理、存储及进程对象的一个组合。Oracle是一个基于B/S模式的关系型数据库管理系统(RDBMS)。

Oracle系统体系结构由三部分组成:逻辑结构、物理结构和实例。

第四章 ORACLE体系结构 之二

一、Oracle的逻辑结构

Oracle的逻辑结构是一种层次结构。主要由:表空间、段、区和数据块等概念组成。逻辑结构是面向用户的,用户使用Oracle开发应用程序使用的就是逻辑结构。数据库存储层次结构及其构成关系,结构对象也从数据块到表空间形成了不同层次的粒度关系。

第四章 ORACLE体系结构 之二

1.数据块(Data Blocks)

数据块是Oracle最小的存储单位,Oracle数据存放在“块”中。一个块占用一定的磁盘空间。特别注意的是,这里的“块”是Oracle的“数据块”,不是操作系统的“块”。

Oracle每次请求数据的时候,都是以块为单位。也就是说,Oracle每次请求的数据是块的整数倍。如果Oracle请求的数据量不到一块,Oracle也会读取整个块。所以说,“块”是Oracle读写数据的最小单位或者最基本的单位。

块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。

操作系统每次执行I/O的时候,是以操作系统的块为单位;Oracle每次执行I/O的时候,都是以Oracle的块为单位。

Oracle数据块大小一般是操作系统块的整数倍。

数据块的格式(Data Block Format)

块中存放表的数据和索引的数据,无论存放哪种类型的数据,块的格式都是相同的,块由块头(header/Common and Variable),表目录(Table Directory),行目录(Row Directory),空余空间(Free Space)和行数据(Row Data)五部分组成,如下图

第四章 ORACLE体系结构 之二

块头(header/Common and Variable):存放块的基本信息,如:块的物理地址,块所属的段的类型(是数据段还是索引段)。

表目录(Table Directory):存放表的信息,即:如果一些表的数据被存放在这个块中,那么,这些表的相关信息将被存放在“表目录”中。

行目录(Row Directory):如果块中有行数据存在,则,这些行的信息将被记录在行目录中。这些信息包括行的地址等。

行数据(Row Data):是真正存放表数据和索引数据的地方。这部分空间是已被数据行占用的空间。

空余空间(Free Space):空余空间是一个块中未使用的区域,这片区域用于新行的插入和已经存在的行的更新。

头部信息区(Overhead):我们把块头(header/Common and Variable),表目录(Table Directory),行目录(Row Directory)这三部分合称为头部信息区(Overhead)。头部信息区不存放数据,它存放的整个块的信息。头部信息区的大小是可变的。一般来说,头部信息区的大小介于84字节(bytes)到107字节(bytes)之间。

数据块中*空间的使用

当往数据库中插入(INSERT)数据的时候,块中的*空间会减少;当对块中已经存在的行进行修改(UPDATE)的时候(使记录长度增加),块中的*空间也会减少。

DELETE语句和UPDATE语句会使块中的*空间增加。当使用DELETE语句删除块中的记录或者使用UPDATE语句把列的值更改成一个更小值的时候,Oracle会释放出一部分*空间。释放出的*空间并不一定是连续的。通常情况下,Oracle不会对块中不连续的*空间进行合并。因为合并数据块中不连续的*空间会影响数据库的性能。只有当用户进行数据插入(INSERT)或者更新(UPDATE)操作,却找不到连续的*空间的时候,Oracle才会合并数据块中不连续的*空间。

对于块中的*空间,Oracle提供两种管理方式:自动管理,手动管理

行链接和行迁移(Row Chaining and Migrating)

行链接(Row Chaining):如果我们往数据库中插入(INSERT)一行数据,这行数据很大,以至于一个数据块存不下一整行,Oracle就会把一行数据分作几段存在几个数据块中,这个过程叫行链接(Row Chaining)。如下图所示:

第四章 ORACLE体系结构 之二

如果一行数据是普通行,这行数据能够存放在一个数据块中;如果一行数据是链接行,这行数据存放在多个数据块中。

行迁移(Row Migrating):数据块中存在一条记录,用户执行UPDATE更新这条记录,这个UPDATE操作使这条记录变长,这时候,Oracle在这个数据块中进行查找,但是找不到能够容纳下这条记录的空间,无奈之下,Oracle只能把整行数据移到一个新的数据块。原来的数据块中保留一个“指针”,这个“指针”指向新的数据块。被移动的这条记录的ROWID保持不变。行迁移的原理如下图所示:

第四章 ORACLE体系结构 之二

无论是行链接还是行迁移,都会影响数据库的性能。Oracle在读取这样的记录的时候,Oracle会扫描多个数据块,执行更多的I/O。

块中*空间的自动管理

Oracle使用位图(bitmap)来管理和跟踪数据块,这种块的空间管理方式叫“自动管理”。自动管理有下面的好处:

◆易于使用

◆更好地利用空间

◆可以对空间进行实时调整

块中*空间的手动管理

用户可以通过PCTFREE, PCTUSED来调整块中空间的使用,这种管理方式叫手动管理。相对于自动管理,手动管理方式比较麻烦,不容易掌握,容易造成块中空间的浪费。

PCTUSED也是用于设置一个百分比,当块中已使用的空间的比例小于这个百分比的时候,这个块才被标识为有效状态。只有有效的块才被允许插入数据。

PCTFREE参数用于指定块中必须保留的最小空闲空间百分例,默认值为10。之所以要预留这样的空间,是因为UPDATE时,需要这些空间。如果UPDATE时,没有空余空间,Oracle就会分配一个新的块,这会产生行迁移(Row Migrating)。

例如,假定在Create table语句中指定了pctfree为20,则说明在该表的数据段内每个数据块的20%被作为可利用的空闲空间,用于更新已在数据块内存在的数据行其余80%是用于插入新的数据行,直到达到80%为止。显然,pctfree值越小,则为现存行更新所预留的空间越少。因此,如果pctfree设置得太高,则在全表扫描期间增加I/O,浪费磁盘空间;如果pctfree设置得太低,则会导致行迁移。 
pctused参数设置了数据块是否是空闲的界限。当数据块的使用空间低于pctused的值时,此数据块标志为空闲,该空闲空间仅用于插入新的行。如果数据块已经达到了由pctfree所确定的上边界时,Oracle就认为此数据块已经无法再插入新的行。例如,假定在Create table语句中指定pctused为40,则当小于或等于39时,该数据块才是可用的。所以,可将数据块填得更满,这样可节省空间,但却增加了处理开销,因为数据块的空闲空间总是要被更新的行占据,所以对数据块需要频繁地进行重新组织。比较低的pctused增加了数据库的空闲空间,但减少了更新操作的处理开销。所以,如果pctused设置过高,则会降低磁盘的利用率导致行迁移;若pctused设置过低,则浪费磁盘空间,增加全表扫描时的I/O输出。pctused是与pctfree相对的参数。 
那么,如何选择pctfree和pctused的值呢?有个公式可供参考。显然,pctfree和pctused的之和不能超过100。若两者之和低于100,则空间的利用与系统的I/O之间的最佳平衡点是:pctfree与pctused之和等于100%减去一行的大小占块空间大小的百分比。例如,如果块大小为2048字节,则它需要100个字节的开销,而行大小是390字节(为可用块的20%)。为了充分利用空间,pctfree与pctused之和最好为80%。 
那么,怎样确定数据块大小呢?有两个因素需要考虑: 
一是数据库环境类型。例如,是DSS环境还是OLTP环境?在数据仓库环境(OLAP或DSS)下,用户需要进行许多运行时间很长的查询,所以应当使用大的数据块。在OLTP系统中,用户处理大量的小型事务,采用较小数据块能够获得更好的效果。 
二是SGA的大小。数据库缓冲区的大小由数据块大小和初始化文件的db_block_buffers参数决定。最好设为操作系统I/O的整数倍。

(以上摘自http://www.bitscn.com/pdb/oracle/200904/160356.html

2.数据区(Extent)

是一组连续的数据块。当一个表、回滚段或临时段创建或需要附加空间时,系统总是为之分配一个新的数据区。一个数据区不能跨越多个文件,因为它包含连续的数据块。使用区的目的是用来保存特定数据类型的数据,也是表中数据增长的基本单位。在Oracle数据库中,分配空间就是以数据区为单位的。一个Oracle对象包含至少一个数据区。设置一个表或索引的存储参数包含设置它的数据区大小。

3.段(Segment)

是由多个数据区构成的,它是为特定的数据库对象(如表段、索引段、回滚段、临时段)分配的一系列数据区。段内包含的数据区可以不连续,并且可以跨越多个文件。使用段的目的是用来保存特定对象。 
一个Oracle数据库有4种类型的段: 
数据段:数据段也称为表段,它包含数据并且与表和簇相关。当创建一个表时,系统自动创建一个以该表的名字命名的数据段。 
索引段:包含了用于提高系统性能的索引。一旦建立索引,系统自动创建一个以该索引的名字命名的索引段。 
回滚段:包含了回滚信息,并在数据库恢复期间使用,以便为数据库提供读入一致性和回滚未提交的事务,即用来回滚事务的数据空间。当一个事务开始处理时,系统为之分配回滚段,回滚段可以动态创建和撤销。系统有个默认的回滚段,其管理方式既可以是自动的,也可以是手工的。 
临时段:它是Oracle在运行过程中自行创建的段。当一个SQL语句需要临时工作区时,由Oracle建立临时段。一旦语句执行完毕,临时段的区间便退回给系统。

4.表空间(tablespace)

是数据库的逻辑划分。任何数据库对象在存储时都必须存储在某个表空间中。表空间对应于若干个磁盘文件,即表空间是由一个或多个磁盘文件构成的。表空间相当于操作系统中的文件夹,也是数据库逻辑结构与物理文件之间的一个映射。每个数据库至少有一个表空间(system tablespace),表空间的大小等于所有从属于它的数据文件大小的总和。

(1)系统表空间(system tablespace)

是每个Oracle数据库都必须具备的。其功能是在系统表空间中存放诸如表空间名称、表空间所含数据文件等数据库管理所需的信息。系统表空间的名称是不可更改的。系统表空间必须在任何时候都可以用,也是数据库运行的必要条件。因此,系统表空间是不能脱机的。 
系统表空间包括数据字典、存储过程、触发器和系统回滚段。为避免系统表空间产生存储碎片以及争用系统资源的问题,应创建一个独立的表空间用来单独存储用户数据。

(2)SYSAUX表空间 
是随着数据库的创建而创建的,它充当SYSTEM的辅助表空间,主要存储除数据字典以外的其他对象。SYSAUX也是许多Oracle 数据库的默认表空间,它减少了由数据库和DBA管理的表空间数量,降低了SYSTEM表空间的负荷。

(3)临时表空间 
相对于其他表空间而言,临时表空间(temp tablespace)主要用于存储Oracle数据库运行期间所产生的临时数据。数据库可以建立多个临时表空间。当数据库关闭后,临时表空间中所有数据将全部被清除。除临时表空间外,其他表空间都属于永久性表空间。

(4)撤销表空间 
用于保存Oracle数据库撤销信息,即保存用户回滚段的表空间称之为回滚表空间(或简称为RBS撤销表空间(undo tablespace))。在Oracle8i中是rollback tablespace,从Oracle9i开始改为undo tablespace。在Oracle 10g中初始创建的只有6个表空间sysaux、system、temp、undotbs1、example和users。其中temp是临时表空间,undotbs1是undo撤销表空间。

(5)USERS表空间

用户表空间,用于存放永久性用户对象的数据和私有信息。每个数据块都应该有一个用户表空间,以便在创建用户是将其分配给用户。

第四章 ORACLE体系结构 之二

 

二、物理结构

Oracle物理结构包含了数据文件、日志文件和控制文件

1.数据文件

每一个ORACLE数据库有一个或多个物理的数据文件(data file)。一个数据库的数据文件包含全部数据库数据。逻辑数据库结构(如表、索引)的数据物理地存储在数据库的数据文件中。数据文件有下列特征: 
一个数据文件仅与一个数据库联系。

一旦建立,数据文件不能改变大小.

一个表空间(数据库存储的逻辑单位)由一个或多个数据文件组成。 
数据文件中的数据在需要时可以读取并存储在ORACLE内存储区中。例如:用户要存取数据库一表的某些数据,如果请求信息不在数据库的内存存储区内,则从相应的数据文件中读取并存储在内存。当修改和插入新数据时,不必立刻写入数据文件。为了减少磁盘输出的总数,提高性能,数据存储在内存,然后由ORACLE后台进程DBWR决定如何将其写入到相应的数据文件。

2.日志文件

每一个数据库有两个或多个日志文件(redo log file)的组,每一个日志文件组用于收集数据库日志。日志的主要功能是记录对数据所作的修改,所以对数据库作的全部修改是记录在日志中。在出现故障时,如果不能将修改数据永久地写入数据文件,则可利用日志得到该修改,所以从不会丢失已有操作成果。 
日志文件主要是保护数据库以防止故障。为了防止日志文件本身的故障,ORACLE允许镜象日志(mirrored redo log),以致可在不同磁盘上维护两个或多个日志副本。 
日志文件中的信息仅在系统故障或介质故障恢复数据库时使用,这些故障阻止将数据库数据写入到数据库的数据文件。然而任何丢失的数据在下一次数据库打开时,ORACLE自动地应用日志文件中的信息来恢复数据库数据文件。

Oralce两种日志文件类型:

联机日志文件 
这是Oracle用来循环记录数据库改变的操作系统文件

归档日志文件 
这是指为避免联机日志文件重写时丢失重复数据而对联机日志文件所做的备份

Oracle有两种归档日志模式,Oracle数据库可以采用其中任何一种模式:

NOARCHIVELOG 
不对日志文件进行归档。这种模式可以大大减少数据库备份的开销,但可能回导致数据的不可恢复

ARCHIVELOG 
在这种模式下,当Oracle转向一个新的日志文件时,将以前的日志文件进行归档。为了防止出现历史“缺口”的情况,一个给定的日志文件在它成功归档之前是不能重新使用的。归档的日志文件,加上联机日志文件,为数据库的所有改变提供了完整的历史信息。

在Oracle利用日志文件和归档日志文件来恢复数据库时,内部***可以起一个向导的作用。

3.控制文件

每一ORACLE数据库有一个控制文件(control file),它记录数据库的物理结构,包含下列信息类型: 
数据库名; 
数据库数据文件和日志文件的名字和位置; 
数据库建立日期。 
为了安全起见,允许控制文件被镜象。 
每一次ORACLE数据库的实例启动时,它的控制文件用于标识数据库和日志文件,当着手数据库操作时它们必须被打开。当数据库的物理组成更改时,ORACLE自动更改该数据库的控制文件。数据恢复时,也要使用控制文件。

4.参数文件

除了构成Oracle数据库物理结构的三类主要文件外,Oracle数据库还具有另外一种重要的文件:参数文件。参数文件记录了Oracle数据库的基本参数信息,主要包括数据库名、控制文件所在路径、进程等。与旧版本的初始化参数文件INITsid.ora不同,在Oracle10g中还可以使用二进进制服务器参数文件,并且该服务器参数文件在安装Oracle数据库系统时由系统自动创建,文件的名称为SPFILEsid.ora,sid为所创建的数据库实例名。 
SPFILEsid.ora中的参数是由Oracle系统自动管理。如果想要对数据库的某些参数进行设置,则可能过OEM或ALTER SYSTEM命令来修改。用户最好不要用编辑器进行修改。

三、实例(instance)

数据库实例(也称为服务器Server)就是用来访问一个数据库文件集的一个存储结构及后台进程的集合。它使一个单独的数据库可以被多个实例访问(也就是ORACLE并行服务器-- OPS)。

实例在操作系统中用ORACLE_SID来标识,在Oracle中用参数INSTANCE_NAME来标识, 它们两个的值是相同的。数据库启动时,系统首先在服务器内存中分配系统全局区(SGA),构成了Oracle的内存结构,然后启动若干个常驻内存的操作系统进程,即组成了Oracle的 进程结构,内存区域和后台进程合称为一个Oracle实例。

第四章 ORACLE体系结构 之二
1.系统全局区(SGA)

SGA是一组为系统分配的共享的内存结构,可以包含一个数据库实例的数据或控制信:  息。如果多个用户连接到同一个数据库实例,在实例的SGA中,数据可以被多个用户共享, 当数据库实例启动时,SGA的内存被自动分配;当数据库实例关闭时,SGA内存被回收。  SGA是占用内存最大的一个区域,同时也是影响数据库性能的重要因素。

系统全局区(SGA),主要包括:

1)数据块缓存区 
数据块缓存区(datablockbuffercache)是SGA中的一个高速缓存区域,用来存储从数据库中读取数据段的数据块(如表、索引和簇)。数据块缓存区的大小由数据库服务器init.ora文件中的DB_LOCK_BUFFERS参数决定(用数据库块的个数表示)。在调整和管理数据库时,调整数据块缓存区的大小是一个重要的部分。

因为数据块缓存区的大小固定,并且其大小通常小于数据库段所使用的空间,所以它不能一次装载下内存中所有的数据库段。通常,数据块缓存区只是数据库大小的1%~2%,Oracle使用最近最少使用(LRU,leastrecentlyused)算法来管理可用空间。当存储区需要*空间时,最近最少使用块将被移出,新数据块将在存储区代替它的位置。通过这种方法,将最频繁使用的数据保存在存储区中。

然而,如果SGA的大小不足以容纳所有最常使用的数据,那么,不同的对象将争用数据块缓存区中的空间。当多个应用程序共享同一个SGA时,很有可能发生这种情况。此时,每个应用的最近使用段都将与其他应用的最近使用段争夺SGA中的空间。其结果是,对数据块缓存区的数据请求将出现较低的命中率,导致系统性能下降。

2)字典缓存区 
数据库对象的信息存储在数据字典表中,这些信息包括用户帐号数据、数据文件名、段名、盘区位置、表说明和权限,当数据库需要这些信息(如检查用户查询一个表的授权)时,将读取数据字典表并且将返回的数据存储在字典缓存区的SGA中。

数据字典缓存区通过最近最少使用(LRU)算法来管理。字典缓存区的大小由数据库内部管理。字典缓存区是SQL共享池的一部分,共享池的大小由数据库文件init.ora中的SHARED_POOL_SIZE参数来设置。

如果字典缓存区太小,数据库就不得不反复查询数据字典表以访问数据库所需的信息,这些查询称为循环调用(recuesivecall),这时的查询速度相对字典缓存区独立完成查询时要低。

3)重做日志缓冲区 
重做项描述对数据库进行的修改。它们写到联机重做日志文件中,以便在数据库恢复过程中用于向前滚动操作。然而,在被写入联机重做日志文件之前,事务首先被记录在称作重做日志缓冲区(redologbuffer)的SGA中。数据库可以周期地分批向联机重做日志文件中写重做项的内容,从而优化这个操作。重做日志缓冲区的大小(以字节为单位)由init.ora文件中的LOG_BUFFER参数决定。

4)SQL共享池 
SQL共享池存储数据字典缓存区及库缓存区(librarycache),即对数据库进行操作的语句信息。当数据块缓冲区和字典缓存区能够共享数据库用户间的结构及数据信息时,库缓存区允许共享常用的SQL语句。

SQL共享池包括执行计划及运行数据库的SQL语句的语法分析树。在第二次运行(由任何用户)相同的SQL语句时,可以利用SQL共享池中可用的语法分析信息来加快执行速度。

SQL共享池通过LRU算法来管理。当SQL共享池填满时,将从库缓存区中删掉最近最少使用的执行路径和语法分析树,以便为新的条目腾出空间。如果SQL共享池太小,语句将被连续不断地再装入到库缓存区,从而影响操作性能。

SQL共享池的大小(以字节为单位)由init.ora文件参数SHARED_POOL_SIZE决定。

5)大池 
大池(LargePool)是一个可选内存区。如果使用线程服务器选项或频繁执行备份/恢复操作,只要创建一个大池,就可以更有效地管理这些操作。大池将致力于支持SQL大型命令。利用大池,就可以防止这些SQL大型命令把条目重写入SQL共享池中,从而减少再装入到库缓存区中的语句数量。大池的大小(以字节为单位)通过init.ora文件的LARGE_POOL_SIZE参数设置,用户可以使用init.ora文件的LARGE_POOL_MIN_ALLOC参数设置大池中的最小位置。Oracle8i已不用这个参数。作为使用LargePool的一种选择方案,可以用init.ora文件的SHARED_POOL_RESERVED_SIZE参数为SQL大型语句保留一部分SQL共享池。

6)Java池 
由其名字可知,Java池为Java命令提供语法分析。Java池的大小(以字节为单位)通过在Oracle8i引入的init.ora文件的JAVA_POOL_SIZE参数设置。init.ora文件的JAVA_POOL_SIZE参数缺省设置为10MB。

7)多缓冲池 
可以在SGA中创建多个缓冲池,能够用多个缓冲池把大数据集与其他的应用程序分开,以减少它们争夺数据块缓存区内相同资源的可能性。对于创建的每一个缓冲池,都要规定其LRU锁存器的大小和数量。缓冲区的数量必须至少比LRU锁存器的数量多50倍。

创建缓冲池时,需要规定保存区(keeparea)的大小和再循环区(recyclearea)的大小。与SQL共享池的保留区一样,保存区保持条目,而再循环区则被频繁地再循环使用。可以通过BUFFER_POOL_KEEP参数规定来保存区的大小。例如: 
保存和再循环缓冲池的容量减少了数据块缓冲存储区中的可用空间(通过DB_BLOCK_BUFFERS参数设置)。对于使用一个新缓冲池的表,通过表的storage子句中的buffer_pool参数来规定缓冲池的名字。例如,如果需要从内存中快速删除一个表,就把它赋予RECYCLE池。缺省池叫作DEFAULT,这样就能在以后用altertable命令把一个表转移到DEFAULT池。

2.后台进程(Backgroung Process)

数据库的物理结构与内存结构之间的交互要通过后台进程来完成。

1、DBWR进程:该进程执行将缓冲区写入数据文件,是负责缓冲存储区管理的一个Oracle后台进程。当缓冲区中的一缓冲区被修改,它被标志为“弄脏”,DBWR的主要任务是将“弄脏”的缓冲区写入磁盘,使缓冲区保持“干净”。由于缓冲存储区的缓冲区填入数据库或被用户进程弄脏,未用的缓冲区的数目减少。当未用的缓冲区下降到很少,以致用户进程要从磁盘读入块到内存存储区时无法找到未用的缓冲区时,DBWR将管理缓冲存储区,使用户进程总可得到未用的缓冲区。

Oracle采用LRU(LEAST RECENTLY USED)算法(最近最少使用算法)保持内存中的数据块是最近使用的,使I/O最小。在下列情况预示DBWR 要将弄脏的缓冲区写入磁盘:

当一个服务器进程将一缓冲区移入“弄脏”表,该弄脏表达到临界长度时,该服务进程将通知DBWR进行写。该临界长度是为参数DB-BLOCK-WRITE-BATCH的值的一半。

当一个服务器进程在LRU表中查找DB-BLOCK-MAX-SCAN-CNT缓冲区时,没有查到未用的缓冲区,它停止查找并通知DBWR进行写。出现超时(每次3秒),DBWR 将通知本身。当出现检查点时,LGWR将通知DBWR.在前两种情况下,DBWR将弄脏表中的块写入磁盘,每次可写的块数由初始化参数DB-BLOCK- WRITE-BATCH所指定。如果弄脏表中没有该参数指定块数的缓冲区,DBWR从LUR表中查找另外一个弄脏缓冲区。

如果DBWR在三秒内未活动,则出现超时。在这种情况下DBWR对LRU表查找指定数目的缓冲区,将所找到任何弄脏缓冲区写入磁盘。每当出现超时,DBWR查找一个新的缓冲区组。每次由DBWR查找的缓冲区的数目是为寝化参数DB-BLOCK- WRITE-BATCH的值的二倍。如果数据库空运转,DBWR最终将全部缓冲区存储区写入磁盘。

在出现检查点时,LGWR指定一修改缓冲区表必须写入到磁盘。DBWR将指定的缓冲区写入磁盘。

在有些平台上,一个实例可有多个DBWR.在这样的实例中,一些块可写入一磁盘,另一些块可写入其它磁盘。参数DB-WRITERS控制DBWR进程个数。

第四章 ORACLE体系结构 之二

2、LGWR进程:该进程将日志缓冲区写入磁盘上的一个日志文件,它是负责管理日志缓冲区的一个Oracle后台进程。LGWR进程将自上次写入磁盘以来的全部日志项输出,LGWR输出:

◆当用户进程提交一事务时写入一个提交记录。 
◆每三秒将日志缓冲区输出。 
◆当日志缓冲区的1/3已满时将日志缓冲区输出。 
◆当DBWR将修改缓冲区写入磁盘时则将日志缓冲区输出。

LGWR进程同步地写入到活动的镜象在线日志文件组。如果组中一个文件被删除或不可用,LGWR可继续地写入该组的其它文件。

日志缓冲区是一个循环缓冲区。当LGWR将日志缓冲区的日志项写入日志文件后,服务器进程可将新的日志项写入到该日志缓冲区。LGWR 通常写得很快,可确保日志缓冲区总有空间可写入新的日志项。

注意:有时候当需要更多的日志缓冲区时,LWGR在一个事务提交前就将日志项写出,而这些日志项仅当在以后事务提交后才永久化。

ORACLE使用快速提交机制,当用户发出COMMIT语句时,一个COMMIT记录立即放入日志缓冲区,但相应的数据缓冲区改变是被延迟,直到在更有效时才将它们写入数据文件。当一事务提交时,被赋给一个系统修改号(SCN),它同事务日志项一起记录在日志中。由于SCN记录在日志中,以致在并行服务器选项配置情况下,恢复操作可以同步。

第四章 ORACLE体系结构 之二

3、CKPT进程:该进程在检查点出现时,对全部数据文件的标题进行修改,指示该检查点。在通常的情况下,该任务由LGWR执行。然而,如果检查点明显地降低系统性能时,可使CKPT进程运行,将原来由LGWR进程执行的检查点的工作分离出来,由CKPT进程实现。对于许多应用情况,CKPT进程是不必要的。只有当数据库有许多数据文件,LGWR在检查点时明显地降低性能才使CKPT运行。 CKPT进程不将块写入磁盘,该工作是由DBWR完成的。初始化参数CHECKPOINT-PROCESS控制CKPT进程的使能或使不能。缺省时为FALSE,即为使不能。

    由于Oracle中LGWR和DBWR工作的不一致,Oracle引入了检查点的概念,用于同步数据库,保证数据库的一致性。在Oracle里面,检查点分为两种:完全检查点和增量检查点。下面我们分别介绍这两种检查点的作用:

1、完全检查点

    在Oracle8i之前,数据库的发生的检查点都是完全检查点,完全检查点会将数据缓冲区里面所有的脏数据块写入相应的数据文件中,并且同步数据文件头和控制文件,保证数据库的一致。完全检查点在8i之后只有在下列两种情况下才会发生:

(1)DBA手工执行alter system checkpoint的命令;

(2)数据库正常shutdown(immediate,transcational,normal)。

由于完全检查点会将所有的脏数据库块写入,巨大的IO往往会影响到数据库的性能。因此Oracle从8i开始引入了增量检查点的概念。

2、 增量检查点

Oracle从8i开始引入了检查点队列这么一种概念,用于记录数据库里面当前所有的脏数据块的信息,DBWR根据这个队列而将脏数据块写入到数据文件中。检查点队列按时间先后记录着数据库里面脏数据块的信息,里面的条目包含RBA(Redo Block Address,重做日志里面用于标识检查点期间数据块在重做日志里面第一次发生更改的编号)和数据块的数据文件号和块号。在检查点期间不论数据块更改几次,它在检查点队列里面的位置始终保持不变,检查点队列也只会记录它最早的RBA,从而保证最早更改的数据块能够尽快写入。当DBWR将检查点队列里面的脏数据块写入到数据文件后,检查点的位置也要相应地往后移,CKPT每三秒会在控制文件中记录检查点的位置,以表示Instance Recovery时开始恢复的日志条目,这个概念称为检查点的“心跳”(heartbeat)。检查点位置发生变更后,Oracle里面通过4个参数用于控制检查点位置和最后的重做日志条目之间的距离。在这里面需要指出的是,多数人会将这4个参数看作控制增量检查点发生的时间。事实上这是错误的,这4个参数是用于控制检查点队列里面的条目数量,而不是控制检查点的发生。

(1)fast_start_io_target

该参数用于表示数据库发生Instance Recovery的时候需要产生的IO总数,它通过v$filestat的AVGIOTIM来估算的。比如我们一个数据库在发生Instance Crash后需要在10分钟内恢复完毕,假定OS的IO每秒为500个,那么这个数据库发生Instance Recovery的时候大概将产生500*10*60=30,000次IO,也就是我们将可以把fast_start_io_target设置为30000。

(2)fast_start_mttr_target

我们从上面可以看到fast_start_io_target来估算检查点位置比较麻烦。Oracle为了简化这个概念,从9i开始引入了fast_start_mttr_target这么一个参数,用于表示数据库发生Instance Recovery的时间,以秒为单位。这个参数我们从字面上也比较好理解,其中的mttr是mean time to recovery的简写,如上例中的情况我们可以将fast_start_mttr_target设置为600。当设置了fast_start_mttr_target后,fast_start_io_target这个参数将不再生效,从9i后fast_start_io_target这个参数被Oracle废除了。

(3)log_checkpoint_timeout

该参数用于表示检查点位置和重做日志文件末尾之间的时间间隔,以秒为单位,默认情况下是1800秒。

(4)log_checkpoint_interval

该参数是表示检查点位置和重做日志末尾的重做日志块的数量,以OS块表示。

(5)90% OF SMALLEST REDO LOG

除了以上4个初始化参数外,Oracle内部事实上还将重做日志文件末尾前面90%的位置设为检查点位置。在每个重做日志中,这么几个参数指定的位置可能不尽相同,Oracle将离日志文件末尾最近的那个位置确认为检查点位置。

4、SMON进程:该进程实例启动时,执行实例恢复,还负责清理不再使用的临时段。在具有并行服务器选项的环境下,SMON对有故障CPU或实例进行实例恢复。SMON进程有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。

5、PMON进程:该进程在用户进程出现故障时执行进程恢复,负责清理内存储区和释放该进程所使用的资源。例:它要重置活动事务表的状态,释放*,将该故障的进程的ID从活动进程表中移去。PMON还周期地检查调度进程(DISPATCHER)和服务器进程的状态,如果已死,则重新启动(不包括有意删除的进程)。

PMON有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。

6、RECO进程:该进程是在具有分布式选项时所使用的一个进程,自动地解决在分布式事务中的故障。一个结点RECO后台进程自动地连接到包含有悬而未决的分布式事务的其它数据库中,RECO自动地解决所有的悬而不决的事务。任何相应于已处理的悬而不决的事务的行将从每一个数据库的悬挂事务表中删去。

当一数据库服务器的RECO后台进程试图建立同一远程服务器的通信,如果远程服务器是不可用或者网络连接不能建立时,RECO自动地在一个时间间隔之后再次连接。

RECO后台进程仅当在允许分布式事务的系统中出现,而且DISTRIBUTED C TRANSACTIONS参数是大于0。

7、ARCH进程:该进程将已填满的在线日志文件拷贝到指定的存储设备。当日志是为ARCHIVELOG使用方式、并可自动地归档时ARCH进程才存在。

8、LCKn进程:是在具有并行服务器选件环境下使用,可多至10个进程(LCK0,LCK1……,LCK9),用于实例间的*。

9、Dnnn进程(调度进程):该进程允许用户进程共享有限的服务器进程(SERVER PROCESS)。没有调度进程时,每个用户进程需要一个专用服务进程(DEDICATEDSERVER PROCESS)。对于多线索服务器(MULTI-THREADED SERVER)可支持多个用户进程。如果在系统中具有大量用户,多线索服务器可支持大量用户,尤其在客户_服务器环境中。

在一个数据库实例中可建立多个调度进程。对每种网络协议至少建立一个调度进程。数据库管理员根据操作系统中每个进程可连接数目的限制决定启动的调度程序的最优数,在实例运行时可增加或删除调度进程。多线索服务器需要SQL*NET版本2或更后的版本。在多线索服务器的配置下,一个网络接收器进程等待客户应用连接请求,并将每一个发送到一个调度进程。如果不能将客户应用连接到一调度进程时,网络接收器进程将启动一个专用服务器进程。该网络接收器进程不是Oracle实例的组成部分,它是处理与Oracle有关的网络进程的组成部分。在实例启动时,该网络接收器被打开,为用户连接到Oracle建立一通信路径,然后每一个调度进程把连接请求的调度进程的地址给予它的接收器。当一个用户进程作连接请求时,网络接收器进程分析请求并决定该用户是否可使用一调度进程。如果是,该网络接收器进程返回该调度进程的地址,之后用户进程直接连接到该调度进程。有些用户进程不能调度进程通信(如果使用SQL*NET以前的版本的用户),网络接收器进程不能将此用户连接到一调度进程。在这种情况下,网络接收器建立一个专用服务器进程,建立一种合适的连接。