cs231n lecture13 Generative Models

Generative Models

  • PixelCNN/RNN
  • VAE
  • GAN
    cs231n lecture13 Generative Models
    cs231n lecture13 Generative Models

PixelRNN/CNN

  • 生成速度慢
  • pro
    • Can explicitly compute likelihood p(x)
    • Explicit likelihood of training data gives good evaluation metric
    • Good samples
  • con
    • Sequential generation => slow

VAE

  • terminology

    • encoder: x->z inference
    • decode: z->x’ generate
    • sampling: 采样
    • dentisty estimation: give dataset, guess distribution
    • prior: p(z)
    • posterior: p(z|x)
    • likehood p(x|z)
  • pro

    • useful latent representation, inference queries
  • con

    • 生成图片模糊
    • sample quality not the best

    cs231n lecture13 Generative Models
    cs231n lecture13 Generative Models
    cs231n lecture13 Generative Models

GAN

  • 生成图片最清晰
  • 交替训练两个目标,不稳定
    cs231n lecture13 Generative Models

cs231n lecture13 Generative Models

Tricks

Loss
  • 对偏正确的点,惩罚小一点
  • 对偏错误的点,惩罚要大
  • 针对loss, 在单点接近目标的地方,梯度要大,单点远离目标的地方,梯度要小
    cs231n lecture13 Generative Models
  • 比如说max 问题,用log(1x)log(x)是比较合适的
  • 而min 问题,用log(x)log(1x)是比较合适的

思考

  • 如何train decov层?
    • 先训练conv层,然后fix conv, 训deconv? 最后联合训练
  • gan的z和图片如何对应