cs231n lecture13 Generative Models
Generative Models
- PixelCNN/RNN
- VAE
- GAN
PixelRNN/CNN
- 生成速度慢
- pro
- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric
- Good samples
- con
- Sequential generation => slow
VAE
-
terminology
- encoder: x->z inference
- decode: z->x’ generate
- sampling: 采样
- dentisty estimation: give dataset, guess distribution
- prior: p(z)
- posterior: p(z|x)
- likehood p(x|z)
-
pro
- useful latent representation, inference queries
-
con
- 生成图片模糊
- sample quality not the best
GAN
- 生成图片最清晰
- 交替训练两个目标,不稳定
Tricks
Loss
- 对偏正确的点,惩罚小一点
- 对偏错误的点,惩罚要大
- 针对loss, 在单点接近目标的地方,梯度要大,单点远离目标的地方,梯度要小
- 比如说max 问题,用和是比较合适的
- 而min 问题,用和是比较合适的
思考
- 如何train decov层?
- 先训练conv层,然后fix conv, 训deconv? 最后联合训练
- gan的z和图片如何对应