K-Nearest Neighbors近邻算法(KNN)
通过KNN算法计算唐人街探案是哪个类型的电影
import pandas as pd
# 取出列表中出现次数最多的字符
def max_list(lt):
temp = 0
for i in lt:
if lt.count(i) > temp:
max_str = i
temp = lt.count(i)
return max_str
def fun(x, y, z, company, n):
list = []
new_list = []
type = []
for i in range(len(company)):
# 得到欧式距离
dis = ((company.iloc[i, 0] - x) ** 2 + (company.iloc[i, 1] - y) ** 2 + (company.iloc[i, 2] - z) ** 2) ** 0.5
# 将欧式距离全部放到list里面
list.append(dis)
# 排序得到list_
list_ = sorted(list)
# 排序后将前n个放入new_list 中
for i in range(n):
new_list.append(list_[i])
# 通过对于的值在list里面找下标,然后再求出电影的类型
for i in range(n):
type.append(company.iloc[list.index(new_list[i]), 3])
# 将得到的类型列表调用方法max_list
max_str = max_list(type)
print(type)
return max_str
# 读取文件获得数组
company = pd.read_excel(r"C:\Users\Administrator\Desktop\电影分类数据.xlsx", encoding="gbk")
# 除去名字叫电影名称和序号的两列
company.drop(labels=['电影名称', '序号'], axis=1, inplace=True)
print(fun(23, 3, 17, company, 5))