【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记

One stage stochastic programming

考虑如下one stage随机规划(SR)
min ⁡ x E P [ f ( x , ξ ) ] s . t . x ∈ X \min_x \mathbb{E}_\mathcal{P}[f(x, \xi)]\\ s.t. \quad x\in X xminEP[f(x,ξ)]s.t.xX
其中
f : R n × R k → R f: \mathbb{R}^n\times \mathbb{R}^k\to \mathbb{R} f:Rn×RkR为一个连续函数
ξ : Ω → Ξ \xi: \Omega\to \Xi ξ:ΩΞ为定义在概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P)上的随机变量,且 Ξ ⊂ R k \Xi\subset\mathbb{R}^k ΞRk
E p [ ⋅ ] \mathbb{E}_p[\cdot] Ep[]为期望算子

分布鲁棒的主要思想:由于根据样本推测出总体的分布是不确定的,设置分布不确定集合为 P \mathcal{P} P,且满足未知真实分布的某些性质.
将原模型转为DRO问题
min ⁡ sup ⁡ P ∈ P E P [ f ( x , ξ ) ] s . t . x ∈ X \min\sup_{P\in\mathcal{P}}\mathbb{E}_P[f(x, \xi)]\\ s.t.\quad x\in X minPPsupEP[f(x,ξ)]s.t.xX

where P \mathcal{P} P is a set distributions satisfying certain known properties of the unknown true distribution.

Construction of ambiguity sets

  • Monment-type ambiguity set
    P = { P : E P [ ξ ] = μ , E P [ ( ξ − μ ) ( ξ − μ ) T ] = Σ } \mathcal{P}=\{P:\mathbb{E}_P[\xi]=\mu, \mathbb{E}_P[(\xi-\mu)(\xi-\mu)^T]=\Sigma\} P={P:EP[ξ]=μ,EP[(ξμ)(ξμ)T]=Σ}
  • Distance-type ambiguity set
    P = { P : D ( P , P 0 ) ≤ r } \mathcal{P}=\{P:\mathbb{D}(P, P_0)\leq r\} P={P:D(P,P0)r}
    其中 D \mathbb{D} D为概率空间中的度量,可以为 ϕ \phi ϕ-divergence, Kantorovich metric, Wasserstain metric.
  • Mixture distribution
    【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记
    【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记

根据Kantorovich metric可以定义出Hausdorff distance
【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记

Utility-based shortfall risk measure

基于效用的风险度量,对于 Z ∈ L ∞ Z\in L^\infty ZL定义如下
( S R ) S R l , λ P ( Z ) : = inf ⁡ { t ∈ R : E P [ l ( − Z − t ) ] ≤ λ } (SR)\quad SR_{l,\lambda}^P(Z):=\inf\{t\in\mathbb{R}:\mathbb{E}_P[l(-Z-t)]\leq \lambda\} (SR)SRl,λP(Z):=inf{tR:EP[l(Zt)]λ}
l : R → R l:\mathbb{R}\to\mathbb{R} l:RR is an increasing and non-constant convex loss function.
λ \lambda λ is a pre-specified level of loss.(预设值

Alternative characterization

S R l , λ P ( Z ) = inf ⁡ { t ∈ R : Z + t ∈ A P } SR_{l, \lambda}^P(Z)=\inf\{t\in\mathbb{R}: Z+t\in\mathcal{A}_P\} SRl,λP(Z)=inf{tR:Z+tAP}
其中, A P : = { Z ∈ L ∞ : E P [ l ( − Z ) ] ≤ λ } \mathcal{A}_P:=\{Z\in L^\infty: \mathbb{E}_P[l(-Z)]\leq \lambda\} AP:={ZL:EP[l(Z)]λ}称之为可接受集合(acceptance set)
该模型表示对于资产集 Z Z Z,注入最少的资金 t t t,使得 Z + t Z+t Z+t在可接受集合中.
当概率分布未知时,可以定义出分布鲁棒形式(Distributionally robust SR)
( D R S R ) S R l , λ P ( Z ) : = inf ⁡ { t ∈ R : sup ⁡ P ∈ P E P [ l ( − Z − t ) ] ≤ λ } (DRSR) \quad SR_{l, \lambda}^{\mathcal{P}}(Z):=\inf\{t\in\mathbb{R}:\sup_{P\in\mathcal{P}}\mathbb{E}_P[l(-Z-t)]\leq \lambda\} (DRSR)SRl,λP(Z):=inf{tR:PPsupEP[l(Zt)]λ}

Reformulation of DRSRP

【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记
在设置假设条件下,可以将DRSRP模型转为这样一个凸问题

Convergence of the optimal value and optimal solutions

【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记

Portfolio

【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记测试样本外表现(Out-of-sample performance)
【OR】Robust Optimization(2):Distributionally Robust Shorfall Risk学习笔记

Reference

西南大学优化讲座 郭少艳副教授
Distributionally robust shortfall risk optimization model and its approximation