OpenCV 实现分水岭算法
转自:
OpenCV 实现分水岭算法
种子点的标记没有太搞懂,这个算法的速度还是很快的
- // watershed_test20140801.cpp : 定义控制台应用程序的入口点。
- //
- #include "stdafx.h"
- //
- // ch9_watershed image
- // This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
- //
- // Think about using a morphologically eroded forground and background segmented image as the template
- // for the watershed algorithm to segment objects by color and edges for collecting
- //
- /* *************** License:**************************
- Oct. 3, 2008
- Right to use this code in any way you want without warrenty, support or any guarentee of it working.
- BOOK: It would be nice if you cited it:
- Learning OpenCV: Computer Vision with the OpenCV Library
- by Gary Bradski and Adrian Kaehler
- Published by O'Reilly Media, October 3, 2008
- AVAILABLE AT:
- http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
- Or: http://oreilly.com/catalog/9780596516130/
- ISBN-10: 0596516134 or: ISBN-13: 978-0596516130
- OTHER OPENCV SITES:
- * The source code is on sourceforge at:
- http://sourceforge.net/projects/opencvlibrary/
- * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
- http://opencvlibrary.sourceforge.net/
- * An active user group is at:
- http://tech.groups.yahoo.com/group/OpenCV/
- * The minutes of weekly OpenCV development meetings are at:
- http://pr.willowgarage.com/wiki/OpenCV
- ************************************************** */
- #include "cv.h"
- #include "highgui.h"
- #include <stdio.h>
- #include <stdlib.h>
- #include <iostream>
- using namespace std;
- using namespace cv;
- #pragma comment(lib,"opencv_core2410d.lib")
- #pragma comment(lib,"opencv_highgui2410d.lib")
- #pragma comment(lib,"opencv_imgproc2410d.lib")
- IplImage* marker_mask = 0;
- IplImage* markers = 0;
- IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
- CvPoint prev_pt = {-1,-1};
- void on_mouse( int event, int x, int y, int flags, void* param )
- {
- if( !img )
- return;
- if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
- prev_pt = cvPoint(-1,-1);
- else if( event == CV_EVENT_LBUTTONDOWN )
- prev_pt = cvPoint(x,y);
- else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
- {
- CvPoint pt = cvPoint(x,y);
- if( prev_pt.x < 0 )
- prev_pt = pt;
- cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
- cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
- prev_pt = pt;
- cvShowImage( "image", img );
- }
- }
- int main( int argc, char** argv )
- {
- cout<<"input image name: "<<endl;
- string file;
- cin>>file;
- char* filename = (char *)file.c_str();
- CvRNG rng = cvRNG(-1);
- if( (img0 = cvLoadImage(filename,1)) == 0 )
- return 0;
- printf( "Hot keys: \n"
- "\tESC - quit the program\n"
- "\tr - restore the original image\n"
- "\tw or ENTER - run watershed algorithm\n"
- "\t\t(before running it, roughly mark the areas on the image)\n"
- "\t (before that, roughly outline several markers on the image)\n" );
- cvNamedWindow( "image", 1 );
- cvNamedWindow( "watershed transform", 1 );
- img = cvCloneImage( img0 );
- img_gray = cvCloneImage( img0 );
- wshed = cvCloneImage( img0 );
- marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
- markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
- cvCvtColor( img, marker_mask, CV_BGR2GRAY );
- cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );
- cvZero( marker_mask );
- cvZero( wshed );
- cvShowImage( "image", img );
- cvShowImage( "watershed transform", wshed );
- cvSetMouseCallback( "image", on_mouse, 0 );
- for(;;)
- {
- int c = cvWaitKey(0);
- if( (char)c == 27 )
- break;
- if( (char)c == 'r' )
- {
- cvZero( marker_mask );
- cvCopy( img0, img );
- cvShowImage( "image", img );
- }
- if( (char)c == 'w' || (char)c == '\n' )
- {
- CvMemStorage* storage = cvCreateMemStorage(0);
- CvSeq* contours = 0;
- CvMat* color_tab;
- int i, j, comp_count = 0;
- //cvSaveImage( "wshed_mask.png", marker_mask );
- //marker_mask = cvLoadImage( "wshed_mask.png", 0 );
- cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
- CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
- cvZero( markers );
- for( ; contours != 0; contours = contours->h_next, comp_count++ )
- {
- cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
- cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
- }
- color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
- for( i = 0; i < comp_count; i++ )
- {
- uchar* ptr = color_tab->data.ptr + i*3;
- ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
- ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
- ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
- }
- {
- double t = (double)cvGetTickCount();
- cvWatershed( img0, markers );
- t = (double)cvGetTickCount() - t;
- printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
- }
- // paint the watershed image
- for( i = 0; i < markers->height; i++ )
- for( j = 0; j < markers->width; j++ )
- {
- int idx = CV_IMAGE_ELEM( markers, int, i, j );
- uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
- if( idx == -1 )
- dst[0] = dst[1] = dst[2] = (uchar)255;
- else if( idx <= 0 || idx > comp_count )
- dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
- else
- {
- uchar* ptr = color_tab->data.ptr + (idx-1)*3;
- dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
- }
- }
- cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
- cvShowImage( "watershed transform", wshed );
- cvReleaseMemStorage( &storage );
- cvReleaseMat( &color_tab );
- }
- }
- return 1;
- }
实现效果:
相关推荐
- JAVA数据结构与算法的学习——单链表的实现
- 算法进阶面试题06——实现LFU缓存算法、计算带括号的公式、介绍和实现跳表结构
- [源码和文档分享]基于C++实现的双调排序算法
- 利用 pyqt5 实现给 深度学习图像识别算法 SSD300 搭建界面
- 左程云算法初级课 在排好序的矩阵中找数问题 题目解析和代码实现 宏观调度问题
- [OpenCV实战]26 基于OpenCV实现选择性搜索算法
- [源码和文档分享]基于Python实现的Apriori算法和FP-Growth算法的频繁项集挖掘的研究与实现...
- 经典算法研究系列:九之续、sift算法的编译与实现
- 模糊PID控温算法的具体实现(二):MSP430F5438A怎么实现查表法
- 5G NR 定时提前:从协议信令到算法实现 (2)
- 分水岭算法
- 快手的视频 发到抖音 怎么消重 视频md5值查询