Jeff Dean点赞的内容,为什么说未来的深度学习是小、轻、快
Why the Future of Machine Learning is Tiny
当Azeem邀请我到CogX做演讲时,他希望我能把核心集中于引导用户思考的某一个点上。前几年,我的首要任务是让人们相信,深度学习是一场真正的革命,而不仅仅是一时的风尚,目前已经有足够多的例子可以证明这个观点。我之所以知道这个观点是正确的,并不是因为我是一个预言家,而是因为我有机会可以花时间去亲自动手操作这项技术。所以我非常相信深度学习的价值,因为我亲眼见到了这些效果,并且知道,阻止它从实验室走向工业界的唯一屏障,仅仅在于更广泛的应用场景需要投入更多的研究时间。
今天,我将谈论另一种鲜为人知的,但我确信无疑的趋势。那就是我相信机器学习可以在微小的、低功耗的芯片上运行,这种技术将解决目前方案中的瓶颈问题,这就是我在CogX上要讲的。
微型电脑已经足够便宜,且非常普及
因为市场过于分散,以至于很难得到确切的数字,但最好的估计是今年将有超过400亿的微控制器售出,考虑到他们所使用的产品的持久性,可能会有数千亿个微控制器在使用。微控制器(或MCUs)包含一个小CPU,仅仅只有几千字节的RAM,并且被嵌入到消费者、医疗、汽车和工业设备中。它们的设计目的是为了得到低功耗、低成本的产品,预计这一产品今年的平均价格将低于50美分。
它们并没有得到太多的关注,因为它们经常被用来取代旧的电动机械系统在汽车、洗衣机或遥控器上的功能。这些设备的控制逻辑和以前使用的模拟电路和继电器几乎没有什么区别,除了可能有一些可编程功能的微小改变。对于制造商来说,最大的好处是,标准的控制器可以用软件来编程,而不是去定制电子设备,这样可以降低制造过程的成本,也更容易生产。