菜鸟的Spark 源码学习之路 -8 RDD
前文对shuffle的过程进行了学习,shuffle操作本身是基于RDD之间的依赖关系,在RDD之间产生宽依赖是则会有Shuffle。
RDD是Spark中最重要的数据抽象。本文开始,我们将学习SparkRdd的实现细节。
1. 概览
/**
* A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,
* partitioned collection of elements that can be operated on in parallel. This class contains the
* basic operations available on all RDDs, such as `map`, `filter`, and `persist`. In addition,
* [[org.apache.spark.rdd.PairRDDFunctions]] contains operations available only on RDDs of key-value
* pairs, such as `groupByKey` and `join`;
* [[org.apache.spark.rdd.DoubleRDDFunctions]] contains operations available only on RDDs of
* Doubles; and
* [[org.apache.spark.rdd.SequenceFileRDDFunctions]] contains operations available on RDDs that
* can be saved as SequenceFiles.
* All operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)])
* through implicit.
*
* Internally, each RDD is characterized by five main properties:
* RDD有五个重要特性:
1. 包含一个partition列表
2. 包含一个每个分片的函数
3. 包含一个记录与其他RDD的依赖关系列表
4. 可选情况下,对于k-v类型的rdd,有一个分区器
5. 可选情况下,有一个记录计算分片最优位置的列表
* - A list of partitions
* - A function for computing each split
* - A list of dependencies on other RDDs
* - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
* - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
* an HDFS file)
*
* All of the scheduling and execution in Spark is done based on these methods, allowing each RDD
* to implement its own way of computing itself. Indeed, users can implement custom RDDs (e.g. for
* reading data from a new storage system) by overriding these functions. Please refer to the
* <a href="http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf">Spark paper</a>
* for more details on RDD internals.
*/
abstract class RDD[T: ClassTag](
@transient private var _sc: SparkContext,
@transient private var deps: Seq[Dependency[_]]
) extends Serializable with Logging
这里面封装了很多我们熟悉的操作:
还有纷繁复杂的子类
RDD的各种子类实现,多数都是增加该类RDD特有的特性。
2. RDD创建过程记录
回到我们的本地测试demo中
val conf = new SparkConf().setAppName("myApp").setMaster("local[2]") val spark = new SparkContext(conf) val data = Array(1, 2, 3, 4) val disData = spark.parallelize(data)
我们调用了parallelize方法生成了RDD:
/** Distribute a local Scala collection to form an RDD.
*
* @note Parallelize acts lazily. If `seq` is a mutable collection and is altered after the call
* to parallelize and before the first action on the RDD, the resultant RDD will reflect the
* modified collection. Pass a copy of the argument to avoid this.
* @note avoid using `parallelize(Seq())` to create an empty `RDD`. Consider `emptyRDD` for an
* RDD with no partitions, or `parallelize(Seq[T]())` for an RDD of `T` with empty partitions.
* @param seq Scala collection to distribute
* @param numSlices number of partitions to divide the collection into
* @return RDD representing distributed collection
*/
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
// 这里创建了RDD
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
RDDOperationScope这个类用于跟踪RDD操作历史和关联关系。包含一个类和一个伴生对象
/** * A general, named code block representing an operation that instantiates RDDs. * 它是一个统一的,指定的代表初始化RDD工作的代码块。 * All RDDs instantiated in the corresponding code block will store a pointer to this object. * Examples include, but will not be limited to, existing RDD operations, such as textFile, * reduceByKey, and treeAggregate. * Scope之间可以嵌套 * An operation scope may be nested in other scopes. For instance, a SQL query may enclose * scopes associated with the public RDD APIs it uses under the hood. * * There is no particular relationship between an operation scope and a stage or a job. * A scope may live inside one stage (e.g. map) or span across multiple jobs (e.g. take). */ @JsonInclude(Include.NON_NULL) @JsonPropertyOrder(Array("id", "name", "parent")) private[spark] class RDDOperationScope( val name: String, val parent: Option[RDDOperationScope] = None, val id: String = RDDOperationScope.nextScopeId().toString)
** * A collection of utility methods to construct a hierarchical representation of RDD scopes. * An RDD scope tracks the series of operations that created a given RDD. */ private[spark] object RDDOperationScope extends Logging
实际调用的RDDOperationScope.withScope方法。
/** * Execute the given body such that all RDDs created in this body will have the same scope. * The name of the scope will be the first method name in the stack trace that is not the * same as this method's. * * Note: Return statements are NOT allowed in body. */ private[spark] def withScope[T]( sc: SparkContext, allowNesting: Boolean = false)(body: => T): T = { val ourMethodName = "withScope" // 获取线程的方法调用栈 val callerMethodName = Thread.currentThread.getStackTrace() .dropWhile(_.getMethodName != ourMethodName) .find(_.getMethodName != ourMethodName) .map(_.getMethodName) .getOrElse { // Log a warning just in case, but this should almost certainly never happen logWarning("No valid method name for this RDD operation scope!") "N/A" } withScope[T](sc, callerMethodName, allowNesting, ignoreParent = false)(body) }
/** * Execute the given body such that all RDDs created in this body will have the same scope. * * If nesting is allowed, any subsequent calls to this method in the given body will instantiate * child scopes that are nested within our scope. Otherwise, these calls will take no effect. * * Additionally, the caller of this method may optionally ignore the configurations and scopes * set by the higher level caller. In this case, this method will ignore the parent caller's * intention to disallow nesting, and the new scope instantiated will not have a parent. This * is useful for scoping physical operations in Spark SQL, for instance. * * Note: Return statements are NOT allowed in body. */ private[spark] def withScope[T]( sc: SparkContext, name: String, allowNesting: Boolean, ignoreParent: Boolean)(body: => T): T = { // Save the old scope to restore it later val scopeKey = SparkContext.RDD_SCOPE_KEY val noOverrideKey = SparkContext.RDD_SCOPE_NO_OVERRIDE_KEY val oldScopeJson = sc.getLocalProperty(scopeKey) val oldScope = Option(oldScopeJson).map(RDDOperationScope.fromJson) val oldNoOverride = sc.getLocalProperty(noOverrideKey) try { if (ignoreParent) { // Ignore all parent settings and scopes and start afresh with our own root scope sc.setLocalProperty(scopeKey, new RDDOperationScope(name).toJson) } else if (sc.getLocalProperty(noOverrideKey) == null) { // Otherwise, set the scope only if the higher level caller allows us to do so sc.setLocalProperty(scopeKey, new RDDOperationScope(name, oldScope).toJson) } // Optionally disallow the child body to override our scope if (!allowNesting) { sc.setLocalProperty(noOverrideKey, "true") } body } finally { // Remember to restore any state that was modified before exiting sc.setLocalProperty(scopeKey, oldScopeJson) sc.setLocalProperty(noOverrideKey, oldNoOverride) } }
通过RDDOperationScope里面的方法,可以追踪RDD上的操作。